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WORKSHOP ON HIGHER-ORDER SPECTRAL ANALYSIS

June 28-30, 1989

Vail, Colorado

SUMMARY

by

C. L. Nikias and J. M. Mendel

A\bout 123 attendees from the United States, France, United Kingdom, Italy, J pa.i, and Israel

participated in the Vorkshop on iiiglier-Order Spectral Analysis. Held in Vail, Colorado, the three

day event turned out to be very successful in terms of participation and quality of contributions.

'Ihe objective of the workshop was to provide a forum for discussion of new theories and methods

for processing signals that are based on Higher-Order Spectra. The overwhelning response to its

annoneMent, as Weil as the breadth and depth of contributions and informal discussions among

participants, clearly ? tablished that higher-order spectra is a new and emerging technology in

signal processing and is expanding rapidly.

The workshop featured two tutorial sessions, two keynote addresses, one panel discussion and

ten technical sessions. Total of fifty papers were presented. There were no parallel sessions at the

workshop. T'he technical program was truly outstanding. In addition, the workshop provided a

very relaxing atmosphere where many informal discussions took place.

The workshop was sponsored by the Office of Naval Research and the National Science Foun-

dation. Their support allowed the allocation of travel grants for keynote speakers, as well as

post-doctorals and graduate students to participate and present their most recent work on higher-

order spectra. The IEEE Societies on Acoustics, Speech and Signal Processing, Control Systems

and Geoscience and Remote Sensing cooperated towards the success of the workshop.

The workshop was organized and co-chaired by Chrysostomos L. Nikias of Northeastern Uni-

; r .. Jey," M. M, ;dtl of the University of Southern California. A number of.individuals put
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Richard Lcahy (Treasurer/Registration), Georgios Giannakis (Proceedings) and Mysore Raghuveer

Publicity).

The following sessions were held:

TUTORIAL SESSIONS

The workshop featured two tutorial sessions, one and one-half hours each. The first one was

given by Chrysostomos L. Nikias on Higher-Order Spectra in Signal Processing. This tutorial

setrunar: introduced the motivation, definitions and properties of moments., cumulants and higher-

Order spectra in a digital signal processing framework; discussed detection, parameter estimation

;)Hd signal reconstruction application problems that can directly benefit from the use of higher-

Order spectra: and, motivated further research and developments in this area. The second tutorial

seinar was delivered by JerrvY M. Mendel on Nonminimum Phase System Identification.

Nlany new cumulant- based methods for identifying MA, AR and AIMA models just from noisy

output measurements were described. The tutorial also covered reasons for using more than just

second-order statistics, theoretical aspects of the methods, their potential strengths and weaknesses.,

and their interrelationships.

KEYNOTE ADDRESSES

David 1?,. Brillinger delivered the first keynote address of the workshop on Higher-Order Mo-

ments and Spectra: some history, some applications, some extensions and some com-

parative aspects. The usefulness of higher-order moments was emphasized for phase estimation,

removal of Gaussian or certain types of non-Gaussian noise, linear and nonlinear system identifica-

tion. and. improved parameter cstimation. A specific example was presented to demonstrate that

the quality of parameter estimates can be improved by combining second- and third-order statistics. 'or

It was concluded that methods based on higher-order moments will be useful for generating initial

,>timnates of maximum likelihood iterative methods. The second keynote address was deliverd by .1.

('hris Dainty on Bispectrum Imaging Through Turbulence. The radioimige roconstruction

probilvi ,as rwrplained and the limitations of au tocorrelation-based meth}ods discussed. The prob- a-ty Codoesa
Aval and/or
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lem of bispectral imaging through turbulence was then reviewed by giving particular attention to

the effect of turbulence on the bispectrum, signal-to-noise and computational aspects of low-iglt-

level images. Computer algorithms were also presented for two-dimensional signal reconstruction

from magnitude bispectruin.

PANEL DISCUSSION

(Mcdcerator: C. L. Nikias)

A very stimulating two-hour pailel discussion on Higher-Order Spectra: Vhere is the

Field Heading? took place the first evening of the workshop. The first issue that was delbated

concerned the major limitations of higher- order spectra in signal proce:;i tg. Workshop partici-

pants mentioned: high computational-comnplexity graphics, (i.e., the difficulties of displaying and
interpreti ug mu ltidirnensional functions conveniently), the need for long d a records and, tle ie,_,

to connect statistical properties of higher-order spectra to real physical models. Hlowever, the planel

discussion participants also pointed out to the big payoffs that have already occurred using highcr

order spectra in signal processing. These are: (i) detection and estimation of transients in low SNR

environments, ii) the bispectrum is now a standard technique in ocean wave work and radioastron-

omy, (iii) bispectra have shed a lot of new light on plasma physics and turbulence, (iv) volumes of

LEG data have been analyzed via bispectrum/trispectrum since power spectra don't tell us any-

thing about this data, (v) detection and characterization of nonliiearities, (vi) blind equalization

in rommunicationb, and (vii) suppression of additive colored noise in sonar/radar signals.

The third issue that was debated concerned the question whether there are any other properties

of higher-order spectra we don't know yet, or any generalizations that can help us solve new

problems. Two possible generalizations were pointed out: the use of multispectra of which higher-

order spectra are special cases, and, the use of other inverting functions than the natural logarithm

of the characteristic f'inction in defining higher- order statistics. The panel discussion concluded

with the question: "Do we need another workshop?" The answer was unanimous: "'Yes. in two

3



IDENTIFICATION OF NONMINIMUM PHASE SYSTEMS I

(Chairman: D. J. Thomson)

Thle Fiist paper of this session An Iterative Approach to Nonmninimun Phase AR Identification

preuented by G..Jacovitti was interesting in that it discussed moments of nonlinear transformations

of the data instead of simple moments. The second paper AR Identifiability using Cami2dants by A.

Swamni and J. Miendel was interesting in providing conditions for consistanit estimates and in giving

simple examples where single slice estimators fail. On the Use of Second- and JEighcr-ordcr Inverse

S tatistics bNI angussi and~ G. Gianniakis extended Cleveland's ideas of inverse autocorrelations

to the polyspectra. As in the usual case the inverse swaps the AR and \11N parts of the miodel.

.-Ip!)ron~chcs to FIR Si~stern Identification uwith Noisy Data using Higher-Order Statistics bY .1. I\.

-,%-it as valuable in givint, a M~onte-Carlo comparisons of four comlpetitive algorithmlls.

BISPECTRAL ANALYSIS

(Chairman: E. J. Powers)

In the paper .Xfulti- Windoiv Jispectrurn Estimates D. J. T'iho~isoii described a non-lparalnwi nC

iwiltiplo-windowv method for computing consistant estimates of the hispectruiti from short data

-9u]ni nts of ai process, 11. Sakai in his paper A Composite Linear Model Gconrzing a1 Sla~tioh1(i77Y

.$t ochastic Process trith Given Bispect rum presented a composite linear model capable of generatingT

ai stationary stochastic process with a given bispectrum. Hlis approaches are based on the fact that

ai certain linear system with a non-Gaussian, i.i.d., input process provides an output stationar,%

process whose thirdI-order cumulant vanishes except for special combination of two t ime lags. Ini

the! paper Estimation of JFrequenc.?. Response and Intermodulation Distort ion from Ilispcctrvni?? byNI

1?. H gi ert li properties of the bispectrum andl the second-order Volterra miodel ave litilizCel to

i a ntifv in termodlilation d iSLertion int rod uced by quadratically nonlinearl S.sstems. Th'le a pproach

f.1i it a s nesirrnhof th lii Iermoduil ation dIistortion at, more frequency poilit S ini the fine1 ten c.%

Iplanfo thban does the conven tionid two- tone tost.



SONAR AND RADAR APPLICATIONS

(Chairman: J. Smith)

Four papei,, were prescnted in this session that spanned detection and classification finctions

of applied systems for transient and image signal types. The first pai, , by George loup presented

an evaluation of cross- correlation and bicorrelation processing for detecting acoustic transient

signals. Three example transient signals were analyzed. In the second paper Roger I)ver slhowed

the analysis of a doppler-shifted target echo from an amplitude modulated transmitted pulse. It

was shown that the fourth-order spectra could be used to extract range and doppler fron the

echo signal. Under the same conditions the target information was unabtainable from the power

spectrum processing.

A. C. Dubey presented examples of sonar and optical images in the third paper of the session.

Individual seam lines of the images were used to reduce the 2-D problem to a I-1) problem. Ihe

complex cepstrum of higher-order cumulants (bicepstrum) was used to estimate the nonmininuni

phase of the impulse response of the backscatter medium and to reduce the noise in the sonar

data. The data represented early results of using the bicepstrum methods. The fourth paper of

the session showed the application of bispectrum methods to the analysis of the scattered field -1'

radar targets. The paper was presented by I. Young. Radar scattering data from scale models

of commercial transport aircraft was used to show the multiple reflection interactions of target

scattering components. The bispectral plots clearly showed the phase interactions of features of

different aircraft that might be used as signature classification discriminants.

NONLINEAR SYSTEM ANALYSIS

(Chairman: R. R. Mohler)

A nice combination of higher-order moments, polyspectra and functional-series metdhod were

included in this session. The first paper by B. Picinbono considered the parameter linealitY property

of the Volterra kernels to derive nonlinear detection and filter algorithms by geometrical arguments.

This can be compared with an approach which uses a canonical decompositio, of linear systems with
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multipliers. TssfrlnaiyndGussianity, formerly derived by D. Ilnicli froin the bispectrumn,

are supplemented conveniently by means of the new trispectrum test presented bY 1). \Iolle and

,%I. Ilinich. In the third paper, E. J. Powers and his associates estimate the three- wave cou pling

coefficients from turbulent data for fluids and plasmas. System dynamics of a cascade of two-linear

minimum-phase subsystems separated by a zero- memory, monotonic nonlinearity, are i(Ieiitiliedl by

ineans of the appropriate third-order moment or lbispectri.

HARMONIC RETRIEVAL AND DETECTION

(Chairman: J. L. LaCoume)

In this session two papers were related to the retrieval of harmonics. one to trla:ns'eii estli matioli

midl the last to detection using higher-order statistics. 1K. 1,ii and! T. TIsou developed new statistics

for the detection of periodicities using slices of the bispectrumn and/or trispectrni . (;. Volovitz aiid(

(.Scarano introduicedl hybrid inomeiits constructed with nonlinear transfOriis (d th lie aa. 1h'icy

extendedl to these hybrid nonlinear moments the methods of spectral estinmationi. lIn a very close

topic (,. 1K. Papadopoulos and C. L. Nikias extended the Prony method to higher-order statistics.

Their presentation contains the definition of higher-order statistics like operatc-s for deterministic

sigfnals and established the validitY of the proposed generalized 1Prony method. Fimiallv, 1). I'letter

aind If. MNesser gave thle structure of a. detector of non- Gaussian signals i (Iais.sia i ioise lisi iig

igher-order (reward ) statistics.

MULTIDIMENSIONAL SIGNAL PROCESSING

(Chairman: B. Picinbono)

Thel( lead paper entitled 1'e-turc I)iscrirnina-tion via Ilighcr-Ordcr Sfah.i47S was Preselitedi

by (G. 1?am poni. The second paper addressed1 image sequence analysis and recoistruictioni fiomi

he hispectrum and was presentedI by P. N1. Sadler. M. It. laghutveer gave a sliiiilating talk

on two-dimensional nonmiinimurn phase signal processing. T. E. JIall presented predlictive imiage

cod inrg techniqu1es using parametric models and cuminulants. Illis talk wvas followed by 1K. Jliang,

who introduced a third velocity field tomography method using higher-order correlations. .\ n



interesting presentation was given by Y. Ilu who showed how to reconstruct, the autocoielatioji

from sixth-crder moments in optics.

BIOMEDICAL SIGNAL ANALYSIS

(Chairmran: R. Leahy)

The session presented somne work on the application of the bispectrurn to EEG and other

b~iomiedical ignals. D. L. Sherman provided new results in EEG data anialysis Vial eigenstric. m("

b~ased hispectra and 1'. K. Pearson (ienonstraed the usefulness of bispectra analYsis to rat LG

1' Nm ; pesented results on thle (detection of quadratic phase coupling in EEG daita aInd 1\ 'a t

lemionst rated the effectiveness of bispectral anlssto bi oelectric Iplienonlenil.

ARRAY PROCESSING

(Chairman: %M. Ilinich)

1,14 loielea paper was p resented b,, .1. La (_ouiime who fo)rmulated lie alrray proces..si nu p roblil ;1s

il opIi mi zat .ion problem whtere, fourth -order cuinulaiits aire miiimized minder noniiInear cmst a I ats.

1?. Mobler presented a new method based on igher-order statistics andl JC (ldoso (lemtolistrate'd a

neow eivenst ruct ire based method using fourthi -order cumulants. C. L. N ikias presented ain extion)

4 be~ l S PR T algori tIi m to the( t ris pecrm diinomai n and C. dvie Iisc ussed tllbe perforim ance ii

tinelav ostimniat ionl methAods ba sed onl t he bispectruni. The final tailk xvas -6veti bY 1'. too 'elii

St Jp7TaW I O2of .9 or hls Ii I rOC ?rbrn a1/~f [,1'71( ar I fx I urc is Obscrvc d.

IDENTIFICATION OF NNMIINIUM PHASE SYSTEMS, 11

(Chairman: K. S. Lii)

Thei paiper byY )' otivme arid T. %latsiii describ~e at procedht're for estiiniit,- w ecelce

iiir. of mlu tiuannel noniniinmi plia.e AlZMNIA models based onl tlbird-order citulii~

ecirv'algoritlimi for A( noilel was proposed for the coiptiltatiori. Tle' paper bY ..% Id.

imd AT . Vrb'rtii (Ii>cussod( the i'cos~ary aad stifl~uiet c-ond~ition'; for t1 ti 'istelice o)fi stabie Ill_

- 'Vsit uhi thlat it- wii put ma[ tcies aI gjve, ut li-order spectirun1. Doeeitiit'M ipe 1)1)lis i' e



mnethods for seismic (leconvolutiofl. It conb1 dered a ccitiniuous time linear systemj model for the

s eismiic wvavele t and approximated it by an ARM A model. Fourth-order statistics were used to

estimate the AR part of the wavelets.

APPLICATIONS

(Chairman: J. X. Tugnait)

'I'here were six paper,, in the session. E. J. Pow,,ers used bispectral1 analdysis to eslinitate a, second~-

order Volterra systemn to )redlict t ,e response of tethered offshore structures to randoiji soas. I lie

theoretical results were confirmed by a scale-miodel j)hv,,sical expeilimnit. S. Elga, tlsedi bispectrai

anlssto eXplain somne aspects of the rijinear dvinamics of shioaling ocean surface waves. I'le

presence of quiadratic phiase coupling was confirmed. G. Sebert presented the results of extensiVe

\loute-i ario) sirmulations to estimate the statistics of the estimates of bicohierejice and biphiise of

tTie- (- ies consisting- of" variouis t riads of siinusoiG's. The results were then (is(,( to int erpret the

results, of idspvctral analysis of shallow water surface gravity waves.

C.13. Giannakis tised a triple cross-correlation appruach to noise cancelling and relatedl sig-

nJal p)r(:cssing tasks, iii lieti of the usual LMS approach. X. Sa saki proposed and ai alyzedl~v

hti.her-order spectral analYsis based passive imaging systems for reconstructioii of acoustic iolse

son rce dlistrliot ions. Li nallY, 1. .1. Clarke developed a "near optimiral" efficient mu1axiinu iu li keli hoodl

;d-gorit im foi second-order spectral analysis appliQ- tions to array p~rocessing.
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Greetings From The Chairmen

It is our peature to welcome you to the Workshop on
-ligher-Order Spectral Analysis. We are extremely excited
about both the breadth and the depth that the first workshop
on this topic has obtained. Your overwhelming response to

its announcement allowed us to assemble a truly outstanding
technical program consisting of two tutorial sessions. two
keynote addresses and ten technical sessions. The workshop
program promises to provide a forum for discussion of new
theories and methods for processing signals that are based on
Higher-Order Spectra. We are also confident that you will
enjoy your stay in Vail.

We take this opportunity to thank the Office of Naval Re-
search and the National Science Foundation ,, sponsoring
this event. Their support allowed LIS to provide travel grants
for keynote speakers, as well as post-doctorals and graduate
students to participate and present their most recent work on
higher-orde: spectra. We would also like to thank the IEEE
Societies on Acoustics. Speech and Signal Processing, Control
Systems, and Geoscience and Remote Sensing for cooperating
towards the success of the workshop.

A number of individuals put forth outstanding efforts to
make this Workshop a success. We would like to thank the
Workshop Committee Members who have been indispensable
in arranging local details, publications. registration and fi-
nances, and publicity. Special thanks to the various session
chairmen and to Anna Aleska. Gloria Bullock, Cathy Mon-
tana, and Linda Varilla. We are also indebted to David Dob-
',on Of McGregor and Werner.

We thank you for your participation. and we look lorwvard
1'L .%iiPMi 1.l pcrI"nl]\.



WORKSHOP ON HIGHER-ORDER
SPECTRAL ANALYSIS

Sponsored by time Office of Naval Research and National Science Foundation and in
Cooperat..In with the IEEE Societies: Acoustics, Speech and Signal Processing;

Control Systems, and Geoscience and Remote Sensing

The Lodge at Vail
Vail. Colorado

June 28-30. 1989

hfigher-order spectra of a signal contain important information that is
not present in its power spectrum, e.g., nonminimum phase information,
as well as information due to deviations from Gaussianity and types of
nonlinearity. The purpose of this workshop is to provide a forum for
discussion of new theories and methods for processing signals to extract
information that are based on higher-order spectra or cumulants.

" Emphasis on Technology Transfer Issues

* "'wo Tutorial Sessions (1 hours each)

" Two Keynote Addresses

" Ten Technical Sessions



TUTORIAL. SESSIONS

V% C RKSII1)I 10 (M M\ 'I I I I I- I . 1I gher-( rder Spectra in Signal Processinig

O rigi 'Ind (( -CtIhail I hi tial semilii 1irttl(i~ieCs thil (ti atippLi0 iIiditiolls tild properIeCIS 0I IMIMiItIS. euriru111lrit

t 1I K,> I esitiation and ,ignialICrCOns1tcilon alficationl problem"i that canl dIreetl\ hernet it troill thle use ol1

hIIC C-0Iler_ spe)Ctra.I M111 nIoti\ MCIes ttirtler rechA anfd dle% cloprirnt in fil, area.
2.Noiimiiiniuni Phase Sy Acm Identification

In 1-I V!. AA litp/c/. I jh \ 4si(/101.1.1 ( 1,11;P'l 11m. I.o~ A',cl'. . ('A

[his11 tuitorial seiiminia Ietibes, 111011% fiiek etitti1hitt-kised riethois Ii- idiitl iel MA .AR aI
ARMA, models, 11.st Irto_1 riois\ output IIeauelel It cosc- ercs reasons br using1 more thaii just,
seconld-order ttiic.theoreti-cal aspects ol thle mecthods, their potential sIrene,_ths a1d11 nkeses
and their initerrelationships.

Attendeesk" % Ill t-CCCi\ e thle *lll set of \ iC,\rah for- echII tuitorl,1

KEYNOTE AD)DRESSES

I. Higher-Order MIomnits and Spectra: Some HistorN. Some AXpplications, Some Extensions
I-a \id iram~vmtft and Somre Comtiparati ve Aspect,

b\ NIi O li id R,. Bi/illoinct. (pu eoi-crst t/io alim.Btklv CA

5>.!> I ii eher-( rder motuets Lind spectrai have~ been emplow d tort thle deseriptionl mud anal\ is of r-nrtdori
N ~~ ~ N\Ptese ince the unid-thirties, These patautieteis L0 hmi Ii litit'ith ttiortedt tratist.ottatiorts

I -K-of prcse 1h'11C are- use liii itl pr-oblemls Of ' stei iden"tifieatioul mnd of e\alliuilu thle basic
stru*LcLture of proCC,cse. Ini some eases tehaeail ititerpretatiotis. I'le' tia' be delfined tor:
tilne serieN. piunt. cener.,di/ed. spatial. Nector and partieie processes, amtoni2 others . Vhev mla\. be
estniated ill a %.ariet'. of, fashlions. Thie\ haw. beenl uISed sueee1SIflllr inl praetiee. pariticuinrl'. in the

I'i.t(I-(i resenice oft ai ph% ,icall deseriptIIOti of thle eif-eunuistattee. A Nkel. as i ug1tt l thle precedine, remlarks
there x'. ill he detaulid e'.arinationl of- the partiCULar- eaeW ofabilina sx111C1 S\1tetIl itt'. l' inl" a eOMupari'on

1 21' h 01' 1o I near11. quadraii~ ti ad mimumII1.1 likelihood atizl\sis

2. Bispectrmm Imaging Through Turbulence
iiV 1 71/DoinIs. Ioi-iol C Ic.'m1~,i/ol n. U.K.

The resolutionl of conentional1 optiCall images formed thr1o1.u2h atmospherie turbletteeC is LiNUttl'
limrited b'. thle turbulenice tather thanr thle opticail s.tet.Dillraction-limited informtation cim he

I remirv- Rukiraimiretained h\. averaging spatial correlationl funclltions' of the im-ee inteitN. rather than the ma1LC
I vIrrHvirn,,iintensit'. itself'. It is, difficalt. or- perhaps, impossible. to tCitnsru'LCt a! Imap (it the ob ject frotn its,

K simal aul.tocorTelationl. but aln uniqueI imp can be h'itd from the triple correlation or- thle bispIectrumII.
w ' Ini this talk sortFile aspct of ispeetral iriracifIc_ thrCouch turbuI.lecelCM1 are reie''ed. Particular ;Atte21tion

"ill be "ici'le to: (the effCCto turbulece, offr thle biSpeCtrurn.I siMlt-nieaid C01ilutiuaunl
aspects, IIf loN' lioht lesel iphotonl nitiages. and Coropu11Iter aIleotihisw hut1 t'\ dirrrensrrrrl data.,

TECHNICAL. SESSIONS

IdIeii:rii (it Noliiiiii PI'uas S'.steiri I *NILchitiiuseus,oMIl Sicrl 'rcesiri

SBi-p~ctradl Anlsi lroosra eraPrcsii

Sona'r i111d Radarl \ppfK.Ictoss* \ri' Pruirt'imi
* \rlite~n 5'.si~n ,uial. ss *illitieatio'n it Norlliiiiiiiuinitsl Phase S\ stein', 1

* Initirti Reties if idI I ctetii r \piaiu



G,-ENERAL INFORMATION

[Ho" to Reach V ail fromi tenier Airport

Vail IS a 2 - 2.5 hlOur dri\ eAS xetlOl trutl1n\Ci. Onl liutcrtate 701. T o ,el

there from) Stapleton Airport h% rcrnt-a-car. take the only\ airport ecit to

Quebec Street. GO righ"t Onl Quebec Street and tollo\ it lor 1 .0 lile,, to)

1-70). At the 1-71) intersection, take 70) West WI'lo eCi Quebec Street roin

thle left lane). Take 1-70) %o. st 10) nile-, to the Vail c\it. VANSI()\ TO VIL

provides, a shuttle between Denxer Airport and Vail. IDeparting Times:l

10:001 AMI. 2:)0) PM. 7T00) P.M. [o ute nomto alI-O--12
Or (3()3) 47t)-4407.

WNorkshop Site

The Workshop will be held at THE LODGE AT' \'AL. 174
Fast Gore Creek )ri\ e. %'ail. CO 8 1657. Tel. (3013) 476-5011
or (80)1) 237-1 236. Guest roonis tor the Workshop are priced
at S80) per nlighIt Plus ta\, single or double occupancy per
bedroom hiowever long you wish to stay'.

Registration

*Participation is limlited to 100 attendees including authors.
It'von have not registered by June 1, 1989 and wish to attend.

please call M1s. Gloria Bullock at (213) 743-5515 to confirm

availability Of space.

*Please pick uip your registration package Tuesday evening.
Junle 27. 1989o. 5:3() PM - 8:00 PM or Wednesday. June 28.

1989. startins- 7:30 AM.

Social Functions

* lee-Hreaker Reception
Ti',sdlay, June 27. 1989 from 6:310 PM to 8:30 PM

" Luncheon
Wednesday, June 28, 1989 from 1 2:1)0 PM to 2:010 PMI

* Dinner Party
Thursday. June 29. 1989, starting at 7:00 PMI
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AR IDENTIFIABILITY USING CUNIULANTS

Anantlirarn Swami andjerriv M. Mendel

Signal and Iniage Processing Institute
D~epartment of Electrical FLngincering-Systemns

U.niversity of Soutl hcrn California
Los Angeles, CA 90089-0791

Abstrart. W,- ,dd-, Ow pr,,id.-l. -,i - iatinir t),.Ili A order 11 iliit-lia~d :%Rll till,! . t idiicativd if t ie illplit

aid the0 AI jiral-ter, ,f ait~, 'ai I-. S1) A~RMlipqj !w- tI leol-il. anid tile mil-I I,;!- detenrt ili-pas- f;,ct-r,.

In .. ei. iXcit - I." in i to)rvF, i proce-s: the oh'erked 'r JtI1 I I i V.- It(ij is C0Ol-I ( - ';, 1kOfII ink Ii(%%i1. iic er

I uIis c orrp1T f. I hs wid vil nd.iiti\GO. -lre.(uiiillt ie - I-. I- he hFie rilfinger fl-i,t 'I i i11lini'tll t.'rill

A N [I A nindi itii\ I w i i 1)1 x d p and~ har e iiil wr,11Iriit .- pa,- T - ,. 1, 1 J ori ier c I lti lai it - i ,t i imi!i- %-)'4'

fint,,t r- and rje-at ed p,,1( W, hoi% that cotisisietit I.-XII palarao-

eter e" illtijle Carl he obtained via the normial eqution, saell

(,i pI - Ii 1 -LI Vic-~ of the to th order tOn 2 citiillant. WeN- '' (Iht,-

Itiuw via coiinter-examitle, that corlijsterit AR estimates cannot.

it[ i-Ieral. he( ltaiti.d Ifron i iiigle I-F P lice of the cintilait . %k i 0. lil-Ii-. IthP ciiIIai:. ~ l ujllit iii- for

N- ~asand Sufficienit cutiditicuri' for the viXitellcv of a fliil- iii.- i;il l i I are renuiil& ,,i,; aiied a-e2..i-

ril. l.i- -2o0r Eu~ xi enlioii to iii- iuiiit-ditiensioiial. bFr0IlliI

mut hanito-I anid oai-cat-al case, are ljsco-u,--d hriefl.P

Model and Assumptions \ iL. . . . i '
Since tlle o-1h order clitiilatt isa'a iiiiis'iiiti te

,an~ider tue (avi';d SS) Al) MAli).9 ) iiioii'. s-seriF aigu rithnis hased on i-Id sli c.- of ilie cumiilait Faroi- Fn
pro ires 0. - 41 . '6. 8& 9

I i k ) 1 k \= - b; A. -U(I A II (oliecTitig 15) for 7- z- i/ . ] p WC . 11tiitIl

CT(1Ir ii l 1)7 1C

tit tran~fier fioct in

1i~ Il -1 sriICr CT) s a ToCPbtZ Mat rix v t h i i. j)entry (C_
H: I>;(2) 7 t - 5 I q. a( p--,)j and 'vect or b

Ila, 7in 22 ... j ,-i- I a.- its itS I e1 Ileeii. If nat riX C) ( 7

XX, a-mle Fint'~c rank p. thlen consistent AR laraniet ur estiinates can hie oh-
tidiled via (5) fronm the 1-I) slice. palramtiiirzedi h\v the fixed lag'

AS 1. lucre are no pole,-zwi cancelliatiwn' in aI:) i) -, 0.-----' %%e will rail such a slice at fiiil-ctik slice. iftite rank oif

bi q 1 0: 1( 0t b- 0) h(i 0 s .C 1-7 ) is p. we will call thie I-i) slice a rank p slice. The exist eiice
oif a (FuF -rank slice is tisuialli; assiliuw implic iti l or expulicitI .

AS2. Tli puoies of I[,- lie strictiv within tue uniit circe. a-4 C9i

AS3. ItIput. Ol ( . 0-iii.Ot-;ts-al and ha, finite non- 'Fie objutttcs of tI li aper are to estalisi that COtsis-

zn- mil h rder ciiiiilatit. ti-nt ARi paranileer estjinates cau ii obitainted froii the taro--
tial' equtat ions. i.e.. [(5), biasedl on a s n-cific sit of (1 - I )I- D

Nol.. tlint is-loi,i u ;u-in-- j. or q/ 1, is i iiall, iloit. slices. Addulionallv. we ill .- io ia ain examle. that conii'>

F. -urr-lt i.i~~uuinortm ilit uliii' atre iiv(,' i) Fix- tiitaramitter e'timiat.-s Cannot liei obtainied froim a rlliall,'r vut

o-f 1 I) slices. Siice the ttu tile rdr cultin is ai fuiiii if

f- (, m I j larg variaiules. t lie example- and tIii Ilteur ein III,

N - - I to ~~- '1 11 fi s-ctioni-T saildisll t hat for A Ri M.-k prc .1itttitltit

tij 1- t ri ,-d a, 1 71- 1i ) eqilen( i-. a ulira-- firsi cuitid i -:

11iiu. ti -li i i r itilo-itit ;il pa-- fnituics til. n- I -tettwuiu .r anid tficie-nt cinitimuut - ,FI - i -xisti-ici of -i fuill

4-I '--FTlo- APl ulututiuter- it I,, ut II,v fruuii I .- ,. with ail, sli(,. fur Au\IA p~q tisuael, o ;il'uu uF-drivi.

.... .- ' - p. 1* . ,-~ci r-u- lt lu-;ai, to thii SVXI-

u-i X d ,'i- In.uro~nun tuotvii-.li iti -r-

Ii I~!lll~luiuI i uuu(tuul usll itliart- uiiiui2



The Z-transformi of a 1-D cuinulant slice Fqiiat ionl SImay be writtell as

l-It- !he 1- 1) lici- )tratiiw ijze , % t li I lag va;riable k,,. of w .", , )--I( 11, -1 ( ::kA. I? I II I .

or in the lag-doiaiin. as

wli- cre tlt,. cctni -iiindit Vfllv fr' *::. o at iontaritv (if' y( it I\ ak IC_ ~k -s: k,,)I N' /k I/, h

Tb t. v . " ie Z-I raln'f'rtil df the h I) ( in-i h. k OS

-M ktI h 
2 

k - h kAA 7 k, - i

-0 7 >q (20

a r, wtv, 11,111 1; 3. 11; 1! l (I Equation (
2 0

) state, that anyt I-f) ciitulant slice satis-

fies an AR recursion of niaximnum order p. Conicatenating tile
If-- 1: .- I 11Ilast equation for 7-- q 1 . ..q - p - .1. Ml <- 0. we ob-

I1 I 10) tamn a possibly over- det ernined set of' equationis. h( k, a 0.

r, .-i il,-to e cotti:,lex cokIis ! IA, is the Z- where a 1. a( l). 0. ..... f HI -, 1 , has; rank p. then thle

n-o tn'f the -Q11ierice h. .' P Ai i" A" A*il -4, l. correspcnding 1- D slice (plaramietrized by ' %A-_ of the rn-th or-

Tl(, ctijilex conniolut ion inl w ov 1wa writtenl it der cumiulant is a fuil-rank slice. From (I1i. we note that thle

recursion in 1201 will hold withI itinimal order p equivalenitlN.
IL :iHik AI will have rank, p if and only if Al: and t he oumera-

/~~~ ~ ,, du,~. -- 0I tor of H,,t Li: k,.1 have no common facior . We note that the

simtple derivation leading to 15) does not reveal the jiossibilit '
.- fl -1..' --i1: 0) dit of pole-zero cancellations, and minimal recursions of order less

\1 fl (itthan p.

finaiua lint the onpi conivoluti,.f via the CaulCiV Residue

I.r.7, Ipp5 713 and I. a, a'..Vtain Is every 1-D slice a full-rank slice ?

H_ \ i k,)0. - ctvk,, p - q1 (12) Exauiple 1. Consider the ARNIA(I.1I model H): zo l--'

Z a). From (8) and (121. we obstain

nhere, A., - - (I arld -_ :-1 -lz (2a h)1(21

0I 1 Z - a -(1

I 1 ' iIf ab) "a-li) 1ie..b so a= %a' I ra. t hen t he pole at: a
O, I -141 gets canceled by the zero at z -- b(2a - h: i.e.. C, ,( s0) s

II '1 a (Azi; a(s - a'): hence. ('z.,in:0) is zero fcor all n < 0. From

-Iii. ri-lot lot '- 0 l'ollowo fromi (AS 1 . h frif-mv g i L ' . U'6 the discussion following (20). we note that tiiat rix RHO) has all
tOU- fi, T-- J it to in[pb: repeated poles will be cotn- zero entries: the AR parameters cannot he dleteriined in this

liilerid(1 later W\t e e~xcluiii'I te case a - k-, - p - q -0. since caise. The condition abi)2a - b) = I includes an all-pass model
th1. -td eto citnuit pI' jlii a~t thle orilin antI, hence. acdditional with a =- 1 2 (denoted isy an Y in Fig. 1), as wvell as a famxily

- ti t ie, right -hlatl ilt- ofif 1"1 gi veti hiv " ~4,_: Ecjua- of 7iintr i-iihas( nlode is (depict ed by the uipper curve in Fig.
t 12- wa;i al-i dti--i in 2 fcor the Ak, 0. q - t.o7 3 1. for -I < a < -0.5). which are identifiable using otnly output

cast-. correlaticin. However, we also note that for the conditions of Fig.

tt- iti for j;t 13r is- hat, if )ll: as A2 distinct Pole'. I. t he Slices C',~ :A,.A, 0 r ulrn lcs i~ai

- i~ ttitltphiItt .-- -ZJ' : . I lien, it can ibe shown, that the 1-D slice. (',,ln:0.0). is a zero-rank

-i'slice. if b - a--I-a _a3 )1 '3,0 < a< 1 (see Fig. 2).

Wb- , (15-) Example 2. Contsider the AR(2) model. H(:;s 1 (1 - p2_ -2
ii with impulse response. A) 2ri - p

t
". hIti2n - 1I sO . -- 0. Froit

a ir(4). it folows immnediately that (',,(7. 7 : 0. if 72 is Odid:

4-fI thus. these slices are zero rank.

.i -il'I -Examlple 3. The slices C,t,( z-,).J A0 trnip, of the AR~p)
model with poles at :=exp) j 2rrt 71. ni 0- ...-p - 1. are, all

P 'i i a.') ii ttli-.- zro-rank sllces.

Front tile albove e xiii 0)1 e we ciiluii i that every 1- D
It oh, 1' 'A __.. - (17) slice neel niot be a full-n-ayk slice.

2



Does there exist a full-rank slice ? 7, o':
.5 k: C~,fl 124~

The existtence of a full-rank lic, ha', been iitipiicitlv or expl-icitly . I i Q

assumed in 2 - 4 .6. 1. -i 1 I'llit- autription that a given I-

D c untulant rslce has full- rank, iii;t5 he ap propit ate for iii Iirig T1e e lemnlt s of tile Joe ph tz tnat rix CI i n 16) are givten h v ( 23.

where lthe untknow n i nip ul I e Fpoll e is aipprox imtat ed h)' an Henitce, we olbtain

ARM tuodel. hut not for i ito i; atxtn, where H( is assumed C T - V, D V-,12i

to hie an ARNIA model, where the Vandertnondte mat rices I*1 and I> have (t.j) ent ries

Iciv-n by- o- ar( t . .- .. p. Mlatrix F Li it diagonal
Exaumple 4. C onsider a ttti~tKum phasie ARM\A( 2.21 itiodel. ;
with 3, = I rio.t, I 1.2. i.e.. matrix with eot ries D) A. 0A C,Q rI 'i: 2 , 1_ . Sin ce t h(e

poiles It are distinct. matrices V; atnd I _have fill rank P. 'Ihere-

____ ______fore. moatriX CT will have fuill rank p if and only if Li, A% k U

For this model, it i, easilyv -tircirv that blr k, 0. Theorem 1. If q <; p. arid thle piole, of HI- ire simtlei tw irita

knecess.ary atid utfitcieint cottditti for the 1 ) -lii'-
ito 1 :A-~ -0.~i~r1 22 ~ -~it~.) to lie at full! rink -lo is "rrt' h

Hlence. the rr-curstoir in (2 tfiIt-. t rttni l order 1. The I-ID hlces ik I. , 0.2

C, -:k., , 0 hta ve ran k I rI i A R re c it rc ion hased on t hese

,lire, lla& to consistent e t i iat of -,. hut cannoct reveal the re ere .i A: i- . -_ is givt-t t 1

pretence of the pole at ti e: W oti. that t hi conili,1 riapp.-r, t' l, ,t-r".,~r~ C

C'ail we find a Pair k. -i ch that the nmierator of i.e.. itt iteiteral. we carnnotr~ptt a -1 .ltcr. tie a~ fill-rank

H. :('has the factor i 1 If 'itch a pair exists. thein. thle Slice. Theoremt I can lie extette~iit, iii, qJ anrd roprotrtld

'lice C3 1 7: 0) Will also haire rri t k I. -It orier to ind Stich a pair. root' ,cases. A ctiulttioti stuttlar to 20i-i It atn-i:owyr

we 't fl-u: ) -~- r 0- tlto 1,'d .lo (i24,) has to b~e itiodiieil. 1-11(-p ettiiNs ill hecjst.-I

lat er.
o2, I' ,n 1 o'. 1 i-- 2- - 0

Special case: 4-t. ( Third-n-de- cuitiilants

which is auiuadratic eqio ii it.t- Fir -- I -- o, 0.419. Orne of l-ttr coty' tlitiv e let it-. 'lic.

tin- tw rv)oluttion, fcor -1 is realI Zt~rd att i-fie_ 0 <1 1.I Figulre

3 hiorc thle comtiniationt of t: ,. for wchich thle k', 0 slice 7 i-~r. 0) 11 Jr 7? 1* N: 11 it -,

canniot he used to idetifv the pole at :z t- Htece. for this

examtple. all slices are of rartk 1. 1lucre tdei, t exist a frill-rank Sinice we or- blrdmirr, aitli ri-til pric -s to i,, is real. atid the

,lice for t hi exartple. la~t ,qcuiationt is ideniical to thte Bi/n r~ rh- tilt t firila.

M ltriickitrg tile trti iitrI-tti rt l'ir It e of' air

Example 5. More genrerallv. thle 1 1 ) -lice'.(l of tile

ttiaxtttium-phase .ARM\Aup l fi 'dv-I trith zeros at J. It ik. 0is k, Yras-

-I..p. and 1 fixed, have rank p) - I. for k,, - 0 soe ( I and

12t 1 As inl the .ARN1A1 22 , xttiple just conisideredl. thle 'liCe

at Ak, \&O ill al-uo hare oril\ ranok p I fir tarills cotihbilti n' 'i:0 \ -cj- 2

otf the ("'S.

Froti these xarnplp . ret- t-oicluiie that A full-rank slice whlere Alk t. j -tI-tiii the. sriherscrilit If &dr-0"

may not exist, con iate trarispcoe' atrid C 'I i-i F -: fi!is I afill-

rank slice iff Si A-:0 Ut- c" Abc 0.k s-------..; uTltereoti I'.

For Ok. real. .14l is Heriidtiai sr tittietric. It' .1k it titni-tiitt-ixlar.

W~hen does a full-rank slice exist? tOiet. .t A-:0 (i r 0. A-sitie that tu. i' (r tplex: 'ince 1lte- pair,

iccutr in comptlex conijugate lir,. seed'- bt It(A Su 0. antd
The I -) [ lice. I., t. -. ..- .- is ii full-rarik slce liroeiiei S**i . 0. Hlence. a srtficient cintlt to is t hat thl" lhr-11t1it tor
that rthe Tr-pi, mtatrix in 1i - lIa' rititk 1)t Assumtieq- p. antd sviniinetric itatrix Ilk _ _11H lie no, tit 'rt''t.(7llttizith

subho Ill(. I I ;ito 0 41. toi tit? -ilic -ares tocget lie r. wee d-blain:

1 7'- C_:2 Cor-ollary 1. If the H-ritiati it, i e At IV j - 1- i k

Irirt - r - -. Jr.where .14u 1 i. torti. are tttrtirtrcitr. iq p .

5 /arid io, are di t . t hen 7: 1) j- is it a fill- rilnik 'l ice. -

V ~ - r : -(23 H-ow many 1-13 slices are req~uired ?

S ince tire cinit ioniit for t he -xi't tic - i fuill ratik hlice ;,ppfilr

ito iev restrictivi-. re tiatrraly a-k irr-- - relrht-r at tinut (-I

3



-7 '2!1 0!I. and l, -

0. >;'yx 10 h- vIi-i--n A k pirari T l'rv wr.v- . - . .. .. . -irl, gi,ii Lv 1 aid I ,and

T, .;I~ 4 1 lit 1na fiiix it; ,.l M, k'n > . i

hy, d I

iVt :1 '

%I t I I It i 1114i il~. d' 1, pll f.i, ii; i l t I I , I .

i . .. ..-

11o Ill ri IlL

1 I I 1:I I;1. 11 lll- ,

TII,

fflli I ! k Ii I a t '111N.t.
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- ,I (' Fa I iv, : 2i.c ,r 1 ,

h,, ~ ~ ~ ~ ~ tt P tIri~a I. 0.1 1 p t i ,tit-,itr ri- 2 l l int-i'-. /-r-'I-t) 11rI t-uit. li .. ,% r 'l

hIi - L e!- l~. v-i a"u t t: t, ,
t  t711t- 1, t tr. 0 1 1Il ) Ij1);1 d: ; ,d l r....II ,

Fni.k I -~- rriwokit itl i i rt~pfl- of d1t-J M t.I Ilie,

C oy llilN.4.1inl artier to e, taiiii-.ii ti- 1:Ititetih ne .of titiir- -,r i I tr

XX hat al)Ol~t non-causal ABAIlA (oes mula clI c' lar tpr~l.e -rriaiuttt 5o a -p t t

2it tideri -1iiriv it' rea m liftin ( rit-rt i t-.. a in' riorieI i'

I'I NN* J, w, ..Ftttt .t r Ltt to i tI woirkti.'ti a here. i Ht Hi ore r1uit t1 t'. lat tie l t ci i ua a i.al.tt~ t

H'.-~~~~~~~~~~~~ -1'. 1- tl' t~' tt t ~p I io i;Lt ia \ I .I rt- itidsraiit-I 'viat-rc ~ 'f-it- i- pie-ir t

.I~~~~~~ ~ ~~~~ Ir Ii ; Iti li it aiir~i -I' 1tti A t'iirn -k-ia'itt t'

- - - 1 t7 Y- 1 ' 1 ; 1 l , ,M .I

;t her t hr- % of ' t



if the miomtents of a dot eriuinist ic Signal are dehine1 a~s 14, J. K Tugnait, "On Selection of Mlaximium ('unulant Lags fo: Non-

causal Autoregressive Model Fitting", in Proc. ICA SSP-66a Nvw

yriiy~ll Tl.'Y1 -~ 7- York. NY, 2372-5. April 1988.

15' J.K. Tugnait. "Recovering the Poles Fromn Fourth-Order Curnu-

then Thoreis Iand2 hld fr te ii~tfclis o letritjuiticlants of System Output". in Proc. Amer. C'onitr. Conf., 2090-3.

_signals . iziodeled as the impul, , re'sponse of arn ARNIA niodel If Atlanta, GA. 311CC 19W8

the observed signal is corriilt with addit ive colored Gaussian

noise. additional processing is required to estimate Mk, froum the

noisv output. F ros edure, bir doing thi-i for th. k 3 and k =4

cases, are diiscused in 10 .Usingi the iiefin'tioiis of cutnulants0

of cottplex procese.. given in 10 thle results in I his paper may 8

he ceadjicN ext ended to complyx procesr's as well. 6-
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ON'I LE USE OF SECOND)- AND HIGHER-ORI)ER IN VERSE STATISTICS
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Abstract
Imr. r laojter-order statistics of ton-Gaussian, stationary ran- polv'spectra, along w ith a wkide ran cc of aplctos can b

dom processes are introduced in this paper, as atn extension of found itt 131. 1101.1 13 1. , 1.I
thecir 2nd- order counterparts, known as inverse correlations. Motivated by the existitte work onl 2nd-order inver.SL
[heir U;se Inllse identificatiotn, and specifically in model statistics, we intrloceLC here inverse kth-order statistics, in a.
ord,, determination and parameter estimation problems, is perspective of combining the adv.attages of both the inverse
investiated. Estimation procedures are proposed for obtaining stttcan tklt-recuiniIntdoai.ThaIcotis

sample estimates of inverse statistics and the corresponding presenitedi in thle following sections, focus on the use of inverse
(poly)spcctra. The algorithms derived are illustrated by simnula- 3r-decuuatanbiptafoodrdtriaioad

tton examples, involvinge inverse 2nd- and 3rd-order statistics. pameretiton In diinw poos th tse f

1. IfltrO(IUciOfl inverse correlations for model order selection using rank deter-

Jnverise hi eher- than- 2nd-order statistics, along with their minlation criteria.

Fourier-dotnaiti pairs, inverse pobspectra. constitute a natural In wNhat follows, definitions of inverse statistics along

extens ion of' inverse correlations and spectra, in a hig-her- than- with some basic background results, are included in Section lI;

2itd-Ordvr domain. Inverse correlations and inverse spectra procedures for sattple estimation of invcrsc statistics are pro-

\~ re ntrducd b C c'.lan, [1, nd tuded n [], 2],and posed in Section 1I1; inverse correlation-based algorithms for

11, 0%verviewv discussion on inverse correlations canl also be the model order selection problem are given in Section IV.

found in 1161, and [ 141. Section V includes the proposed algorithms that use inverse

The dua/itsl property between inverse and direct spectra, statistics in sysemn identification, and Section VI contains simou-

o~ffers one the flexibility to interchange the roles of AR and latioti results.

Mi?. parts in ARMIA modeling. Thus. MA parameters canl be

estimated- via linear equaitions, if inverse correlations are 11 Definitions - Background
employed. [51. Several pro~cedures for the estimation of inverse

Let (' tt e a noti-GaUSSiain, stationary, zero-m-ean.
conclaion hae ben ropsed [1, [1, nd symtotc dimcete random p~rocess, with finite moments, and let the kth-

anL'~of tfieir sanmple e-stimators is reported in 12].
ol der cuHinoltit (if fr (t), detnoted by cmi .. r -).be abso-

Auitocorreation and spectral ectitnates perfomni poorly il 1lvtev SUMIMale. Tei, the kth-order spectnim Cki,. thle kth-
ti:picesence of additive, Gaussian noise of unknownt covari- order invecrse speCtrUll C/k,, and the kth-order ir verse cumnulant

,oicc .(ACNJ C,. Additionally', they are itnsensitive to) phase ti, are respectively defited 'Is

Il T1, It 10 in. ihu. uinitlitum phase., causalts' atnd Wh ite GauLs-

sitn noi~c asummltiotis. become tteccssarv whii 21nd-order 1,in .. l1tow ' ' l

,;il tl, e11 itplo% c.

()i hcohcr bau-d. hie-her thllan 2td-ordler statistics, 0/5 , 0i).t..

'Kii-)., n .r imm/onO and their Fouricr pliirs. polvspectra. are

lsih 2iito'et phase itifominaton. and insensitiveC ii) (2)~W1.

:\(1\ &z,, letlel trceitmitnt of o~h -oidr citmlart- atnd

7



hICit I I' 1; .I I CdI 1i ( O1) .. W_ I) I ;t W ... 0 r, hiCh i;1MkS that I yl ',W2 0)) corre.SpondLs to the bispectnim
and that (I_ I i, a1dmits a (k- I )-dimensiontal Fourier rt ieiles RNjp)mdlIl(z=pz~z ngn

e\..li~~il. eial, imet'. e statitics of aI coincide with the direct

It rKlould Ibe noted here ta the firs't of thle :tho'e assumlp- > titi > of 111 (z )

tln, nyloses (lte re rictiorn that tile correlponlding" mlodel of The followkinei- four procedures are discussed in [1], 15],
I a% noi /etoel on t3e unit circle. Note also that, for k =2, for cstimlating inverse correlations: (i) orlthogonialify approach,

a nT ee neOae dehiltOns1 reduce to the ordinary inverse 0ii) ino dpriori approach, (iii) long AR approxinia-

nr la n~"pentdctinons of I.lion approach, and, (iv) best linear interpolator approach.

In :h1: t\\c .kil el focus oilth k=3 cae \%er IHere, We uiSe thle exteitsion of (i) and (ii) for sample estimation

detir'ti fl1 TedUCe to of kth-order inverse CutflUlantS.

(I.1. I ,'Tn 0'' 1. (3a)
The proposed algorithmn is based on the definition of

-3 b) __ inverse cuIMUlants and polyspectra. and includes the followking
C st(01 0)," (A steps

stp1Segmientatiotn of' thle zcro-tteatt (or zero-mean compeni-
wkhere Oin - E L k it )1 Itm) x (t+11) sated) process {(.lt] in L (possibly ov~erlapping) segments, each

A L! Cfml reL slt. estaiblished by the stationarity of (x id), is Al points long.
tat cicerad s'. ntttiets hold Ior tile laes of ck, and cik,, 13]. step~ 2 (a) FS titna I ion of the 0,h- ord -r. spc&rr

Tlhee >ttnttetrics %kill be Ltised later on, to reduce thle dimen- I i LaAldsrt
Cs, C& t.'k- )k- 1( !O) I.. !'5  LtA dsrt

sona11lite OIt SStCet isOf equaiLM ,S invonlving direct and inverse A

frequI~ency poinits.

Nox. .let K b a iner poces, xprsse ~ t ) - b) A\C raing- (of Ck, nl_.n.j) over thle L segments

V fit -wIai , witere iaI 'is a nort-Gatlssiain, stattoilarv, Ls( L- Xk1

ZCIT- ea. ii~. ~ a th 1 r3 ,I I /it) s te 3 Estimation of thle itiverse Uli-order spectrum using

e.\pITI~etillyv mt~laid '1 llt itle obs erved outpuLt process, Ok,(/iI
1

kI) ;lsrni t 1 d

corr~led by add Ulv e noIise . III independentt of {w It)). Then, step : If thle intenided applications itivolv es inverse cumul111ants,

it Call Ibe piyo\d tha~t use I k-I l-[D itiverse FIT to obtaini Cis,("l T~k 1 17-), from'

Seveial remrnark s are appropriate at this poinrt

0i) lire estittition (If the kth-order spcctum11 (step 2a) carl be

It~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~d)l ile mIIo w1-'s t\iA(,te TiIIc ladhat both yield Cotnsistent estitmates

it.. i., *'f[le ab-re cth'io altertiatik.e aittouttts to calco-

lati IiC

- ~ ~~ I' . , n' It . = - I(' ASi I V(~II11T az _(

%k here C (nI I dellotes the [TI' of 't i) . I-or k = 2. thie abo% e

Ii, e c lle e1 d I;C to tile '[?(ILI./. d [T l 'III,'Tii

III ~i~ipr '.tti~its(T ii'.CIC ~i~t~~ittS 11(1POI~sItctrtI CeitllT tneltud oTi [5 1. Th is fas't approach is itppropri-

I:~ ~~~ I.. a \(NA,' n~s aletCl for lluenevC)C-dOloitt alpproailies. ire the 1)1 (of a1

I T~tIodCI rattler thatt its coifticits are soueht.

a ) Ce htl-0lde_ 1' It( 1'11CTT-TT, -t C 11110'i L !111 tt t0 tilit-

i1i
/ '. .a(0)



here __ni -I) is no\s estimated from thte I th data (-1+ I)X 1(2p1) irxl I zero vector with anl I inl the middle posi-

'Ce ement. tion, and R [Ql is a (2q-s-I)x(2q -s-) 1(2q+l) 2x(2q +1)21 Toeplitz

(ii) Re-odes dtua segmentation, windowing of either the data svinecI block Toeplitji matrix.
Note that, contrary to thle approach described in [12], the

lS.i or. the kth-order spectrum C,, (?z1,...nk-1 ) osually yields derivation of (9) does not include any approximation, i.e., eq.
~.iohette . Cn17.tefloigotml(ntemse (9) will yield thle true Cii,, Ci3 ,, if the true C2,.C3 . are used to

sense) 2-D frequeIncy-domain 'window is prtoposed for smooth- form the two matrices.
in- the ip tL1 etlae

Several comments should be made at this proi nt-

K W (2) ~- - t~i O)~+( 1 W)} i+2+i ~ ~~, (i) This estimation method is more suitable if the intended

application of inverse statistics involves explicitly ci2 , and ci3 ,,

=0, else and not the corresponding inverse spectra.

Oth r %ind% s alltiecnipo~e trdingOffredced arince (H) If we exploit the symmietries in autocorrelations and cumiu-
Othr s idos an e nilovd raIgofrdcdvrac lants. then the dimensionality of the R [Cl systemj r- $ xes to q

for inicreased bias of the C,,(ui .w,) estimators. 171 [, (q +3)121J.
(iii The zero-mnean assumption onl (x (t)} is necessary to (iii) For the case disc-, sed here, ci2 j Ici ij are the 2nd- 1 3rd-I

cu a iran tee that thle additive nise will be canceled inl thle cU - oreumu-illo h Rp mdlprmtrs( /~,[1
lam doman.orecrrioofteRp)mdlprmtr a [1

(iv) In practice, both R and C mnatrices are composed of samnple
Ill . u m I at -i 'u in~~ra~hstatistics, thus yielding sample estimates ci: and Ci3 , of the true

The time1-donminl equlisalenlt ot (3b) :, the kth- inverse statistics. Overdeterminancv of the resulting svstemn
dimenCISionl ,irlh, onillrY Property matrices usually improves the accuracy of the estimates.

~ l.- ~..ft.~' . -~.ii 5 -1~i kft'i *..,b~k ) 7) (v) If [x (0) corresponds to an MA(q) model, thle inverse statis-
6es correspond to anl AR(q) model. fIn this case, the neat linear

For k 7, 7) kield thle ortiJ'oo~iz esimtsf system of eqs,. (9) cannot be obtained, sinec any finite number
(of equations involves twice as many unknowns. Ani approxi-

(1) cU 2 , (n -1 8(m) . (8Sa) mation of the AR order by At, i.e., a truncation at point At, is

then necessary, incuirrin- the risks discussed earlier in this see-
Using, eq. (7) for- k 3 , k ohili in tion. Nevertheless, MA parameter estimation algorithms arc

1 3 ,'fl4~ .'5i~l2 = Oii 1n2 80 available, usiti direct curriilant statistics, [8j,( 151.
( i) Because c~and J . are consistent estimators, and the esti-

For di tftcrenlt % a [Ies o (,I anInd ohn .i2), eq s. ( 8a) and (8 b) ma t ion proicedure i propo.,,ed is line ar. it tol lows that the ci , and

\ el muuiity--~mc~iotats\'semssshch re lnea inthe i estimators are aso consistent. Asvympt otic an a lv is and
uuko~t i cr~ o~i~i~. leice if~xy isgenraly a II \arnc e x prc sions for the ci, etimiator will bie re ported

iincu r pru~.it i cC~~ to trunlcalte thle intintite suiima- cIeSChere.
I):)1t o 1i .1,1 1. )Cpendi, Ouil thle p)ole-zero locations wC a ni nulrofcq'mls(.hInolce"

i.. o ilC ['1.1 po l it %Otiict tile stati.stics of01.oC l~o i 9 \1j ~ llq cc
.-... .. I . - ii~1. i lh ipo'ed liw

fiii ril ii iiiri

lmtl d ord r . 1 (1 11 i tj'i (I[I 11il

2 ~ C

k' i N A



posed inl [51 to estimate thle order p of an AR(p ) process, by

calculating it., inverse correlation sequec~le Ci~x(n), and check- V. Parameter estimation using inverse cumulants

il,- (by Visual inspection) thle lag beyond which ci (tn) is The flexibility of handling the MA part of a general
ffcti' lvZero. ARMA (p,q) model via inverse statistics, as if it were an AR

H-ere, we propose thle use of inverse correlations to solve one, is exploited here. This is because AR parameter estima-

tile "inverse" problem. If' thle process ( , (t)) corresponds to al tion ;,qjuires the solution of a linear system of equations, while

A-RNIApj)4u model B5 (_-)!A,(:), of unknown NIA order q, then MA parameter estimation traditionally requires non-linear

ulSina' thle exhtded Yile-ttaier equattons, a qth-order nminimization procedures,

recursion can be established for thle inverse correlation lags, When (x(r)} comnes from a minimum phase MA(q) model,

[141thle use of inverse correlations was proposed in [5] for estimat-

incg the parameters (b(i))l. 01 using normal equations. in 1zsJ, an
Z (1 / ~ -1) =0, rn > p (10)

altzorithmn was introduced for the solution of the generally

where p = 0) corresponds to thle pure MA case. The proposed non-minimum phase problem, using both autocorrelatioins and

alIhmpoedasflov 3rd-order cumolanlts (see also 1 151).

stepI Otainci ,ti usie ay o themetodspresnte inIn the case of non-causal AR models, (NC AR), however,
Sect)o I : O till C 2( ) LS 1 n f ti e m t o s p e e t d i the param eter estim ation problem canl only be faced in the th-

order statistics domain, and only through a considerably raised
step2 Gvenan uperboud j~~ o th ordr o th AR dimensionality of systems and matrices [9]. The latter

N I) prt f he n c nl poces, or th ~ -lnke manx prompted us to approach the NC AR parameter estimation
I/_ with celmenits {i(lijt},i.problem as a NNIP MA one. The algorithm uses 3rd-order

step 3 :Pe'rforml Sing'ular Value Decomposition (SVD) on Hi, inverse cumulants and includes the following steps

to specify the order q as the number of the first effectively stpI Estimate ci2, and Ci3 ,, corresponding to the known
zero sin euilar \ allies. order AR~j)) model 11(z) = I IA,(z), using one of the approaches

T he numerically robuist. SN D-based approach uses the described in Section 111.

Clltl'C, jl~d enc iomt)j sequence, and asuLch, step 2st : The estimaited inverse statistics correspond to a NMP
expected to outperform thle visual inspection method, which NlAp) model, Hit: I A :). Hence, we can employ the algo-
dcri-ninecs the ,NIA order based on a single point estimate. rithril of I11 to estimate {a()~~solving the system of linear

Note that, as. far as our concern is order determination, the equations

%IA pairt can be non1-nun mum11.11 phase (NNIP), since recursion- - -7 --
C ci, al e (12)

(10) holds ti iie even for N NIPmodels v. hich are frceofutll-pass-

I ctr.Ilo', ever, ion ) laigs now corresponid to it process [rhis system is derived b\y modifying the basic equation of
A' 1)_ 01,i1 11 spemr Ll~ qivilent to fxWt). Consequently, (If)) 11 [is ini 115[, so tha~t it canl be applied to thle inverse model

1110ii llmit be toeCd for paramneter estimatiomn, unless (x(W) is

iniph l'c. XVmai Oii/,ii)l (I/ ?n I---, ii'i, wi~-t u-Ia-),-p 2p.

An :Iltcrnanx e. whenl thle milimumnLI-phase and causaltVi

.ire ~ 1 10titmd itouse a recursion simiilatr to () step (optionali: Further imoprox erent of the estimates

-KriL'd tor invcr~ e1 3rd-rcuttMilnts ( }%is achieved, if thle estimates deived inl step 2 are used

its at starting poin t for thle wtcm~it wd 1'ta -s quares at gorit irn of

Xi I in-/n =0 in = ~.r-~i. =i ~.p ,(lb 1151. it (aeteral. any a) gori t hmi for MIA patriter estimation

!r I :llO. h0 kJ~l~~lIl~il'X - %00C canl be imtpcninntcd inl step 2.

A mi alrerntii, e to thiis a ppioateh is ~cfctctyd)iti
th: :n pc ii un- SVI). 171. Inl the eClicra ease.

'in> sitt~cctiir nde) -ri thft tn [61. implemented aS follows
Ux-ill,"::= Li nI1itl UtIC1I 10,C Order dcitrmi- ctin i t~

Fl( ,ilI-1,- LI m: p includted inl (tic nlodcl. step I : [(stimiatc tile hispecnom Clf 1 ).mj (asSUntling that

N ;inilnt i, jIl :ixprti~ c o(r the '_cnet.,l ease, is Ciirr-cilv {.t (t)! is an ARp) imtodel, with paratmeters aa(b%.~nd coin1-

pr ux c I nun.putte time inverse, bispecctrum( Cln ,a is inl (3b).



ste 2 Reconstruct the Fourier transform A (k) of fa(,P 0 vaIlues becomes tmore pronounced, thus determining the correct

t .romn the inverse hispectrum11, using the frequency-donain ore2 stesimedre.

reconistruction algorithm described in 16]. This algorithm Thle samle ConcILusionl can be drawn fromt Fig. 3, where the

recursiv ely calclateS the VaIlueS of' A (k) at discrete frequt:riy first t'our singular Values of an ARMA(l ,2) model are plotted.

points, ba-sed onl thle recurston The AR and MA parameter vectors were [1 ,-0. 17, 0.721, and

I Ik21 C ik.0) [1, -0.51 respectively. Thirty Monte Carlo experiments are
A (k) = -l y( -!) A () tA k -1 , k =2, 3.(p +1)/2 . averaged here, each involving a 2048-point long data record,

driven by \VGN and segmented in 8 no;--overlapping seg-
A phase correction step integrates the A (k) reconstruction, [6]. er.

stp3 Use inverse FFT to obtain the parameters {0 (j))P,_0  Tables I and If show the lxiaameters of the models in Figs.
TF It i , 1-,AWe uIsig CLq. k i (j). CXPC1LC,iit N.%ri

Ax second alterntive for step 2 of the above algorithmi MA model case, tile auitocorrelation-based method of eq. (10)

-encralizes the least-squares reconstruction approach proposed yields estimate(, parameters of the spectrally equivalent model.

in [11.Speiticlly th folowig rlatins or he mgniudeResults of the implementation of the algorithm described
and the phase of the inverse bispectruni can be derived inl Section V for parameter estimation, are shown in Tables Ill

In , (iI-,n _ I =11n I-1 . I + In IA tn I) In [A l) I and IV. Table Ill (Table IV) corresponds to a causal (NC)

-,-fnIA*(nI+t:-)1 (13) AR(2) model with coefficients [1, -1.25, 01.3751 (11, -2.133

Yi-,,(11~~~~~~~ ~ ~ ~ ~ ~ 1 1)00 ) ,02 ,011+l)(4 .0667 1). The vlueIS shownt are av erac.es over 50) Monte Carlo

expeiments, driven by an exponentially distributed noise pro-
v. here 1yi d, r 2 ):01 101 denlotes the phase of cess. each involving a 1024-point long data record, segmented
CI1f 1,11 i - IA II!, aitd (a: are taken from the tnon- in 4 tion-overlapping se-ments. The last row of these tables

reLLdudInt ree1_ion Of '1 z,01 1,1121 includes the results Ot thle asymptoically opitimal W4LS a

(N twtea ing c eq ua lions; resulting fron? (1 I3) and 1 4). ri thin, initialized by lthe prevjiusly derived estimnates. The

t' I v IW J s,%stCM 115(ifC tjultioul can be solved, uric for the mag- explected improvmement of -thle estitmates towvards the true values,

;Ii, id,-i 11 )anid Onte fkir the phase o 1(K.). Anlalogously to thle is exhibited oiilv in tile NC AR case, thought.
asvliiptoliealiv ptlIappr-oICeII Of 1151, quadratic maingi

11nd 1. -i hf('U /tni.iOrsoslutin (of' ( 13) and ( 14). appear to) VI1. Conclusions

he ' :~ic t~in_ thehkcctalaI~p~tL~C ad has -riaceIi verse hige er- thIian- 2 nd-order s tat isties wvere introduced
c p re jioIls kICmr ed ill JI l1I. P~erformanoce evaluationl Of thle liere, and alI con t ftnis foir hoth hleir es tination awd appliteatiton

Cipprll.iel hated onl ( 1 3 aind 1 14) rernain11 to he tested. inl thle nlodlel identiticatior -:' -!e ia *_e proposed and imple-

Ileliited. Fu rt her potHent ia api 1 cat ions, as well as pe rf orma nce
VI. Simulation Results anal vsis. of' inverse s tati stics in hatch or rcuLrsive fortm ate

Exmlsi!le:rati1 ne the odl order selection algorithm inlteresting future research topics.

de:,crihcd in) Sctionr IV., are showkn ili Fie-s. 1.2 and 3. The four-

miore )imifcatnudar ,,tile,; of thle 16"~ 16 matrix H, are

.tIin lie . I atnd 2. crsuis five differetit SNR levels of'

AWG\.N %%ilh /ero-meani and unit vaiane Fi.1 (- 2)

,o I. pod to) the \1IP \NllP'iJpCrAllv\ eqiLvalent) NlV2)

ci't~ieit' I.-(I. 7. (1.72. [L.-(.2,(Il. 1.388s91).

Liie ~ ~ ~ ~ o icison.r rIe r 3,0 Monite Carlo expert- NRA .

In - 11-tiI.jiiscpnVcntii. Si-iple itlvcr'- corie- 1'~,i ''5 s -~

!imi etinitcr.crc contilied uinu . tilc peCriodograml alternMi- si..iu iiiii'.. (,~r An-ttci 37.102 aS.

it 1un jl. *A, the SNR lete:l r,n'.es from left to righft . rtr.iii.f-ilnl.'iiiiintii Ii-prLI'l

), 19,. i r Iin r i 1. Re Y I'i. Iit t , it ti n T tCIIr .1

f tlc I C ' VI 11C 2 1 Iilld tie 3 -d 1,i t 'IfI i Ikl)- rd r 11, ;,1' I[ :,; AI p.I11Y
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APPROACHES TO F.I.R. SYSTEM IDENTIFICATION WITH NOISY DATA

USING HIGHER-ORDER STATISTICS

Jitendra K. lugnait

Exxon Production Research Company

P.O. Box 2180

i L.ston, TX 77252-2189

,ABSTRACT Within the class of parametric approaches, we have three broad
classes, the distinguishing feature among them being the choice of the

In thi,. pape:r we address the problem of estimating the parameters of a optimization criterion. All of the criteria involve (more or less) a least-
moving average (MA) model given the noisy observations of the system squares error measure. The error definition differs, however, as follows:
output. The system is driven by an i.i.d. (independent and identically
distributed) non-Gaussian sequence that is not observed. The noise is I) Inverse filter error : Filter x(t) in (1.1) by an inverse filter (inverse
additive, i.i.d. and possibly non-Gaussian. We first briefly review the of the MA(q) model) to obtain an estimate Ye([) of w(t) and then
existing linear parametric approaches to this problem. Chief among these minimize some functional of (t). The approaches of Donoho [15)
are: the linear least-squares solution due to Giannakis and Mendel (GM) and Benveniste et al. [13],[161 fall in this category. (The prediction
(ICASSP 1987), the ARMA modeling approach due to Nikias (IEEE error minimization criterion for minimum phase systems also
Trans. ASSP, April 1988), and the solution due to Giannakis (IEEE Proc., belongs to this category. I The theory fails when data is noisy, i.e.,
Sept. 1987). We observe thai in the presence of the non-Gaussian when one works with y(t) instead of x(t). This class of solutions
measurement noise the Nikias' solution may be biased. In the presence of results in a nonlinear optimization problem, in general.
any measurement noise the GM approach yields biased solutions. Both the (ii) Fitting error : Match the model statistics to estimated statistics in a
Nikias' and the Giannakis' solutions neglect the second-order statistics, least-squares sense, as in [101 and [17] for example. This approach
The Giannakis' solution yields high-variance estimates, and is unstable allows consideration of noisy observations. In general, it results in a
under order mismatch. We focus on the GM approach and show that nonlinear optimization problem.
following their basic approach, several other useful linear relations may be
obtained between the system parameters and the output statistics. Using (iii) Equation error : It is based on minimizing the "equation error" in
these relations we modify the GM solution to obtain consistent parameter some equation which is satisfied ideally. A common example is the
estimates in measurement noise. Finally, we investigate the direct, Yule-Walker equations. The approaches of [31, [41. [111 and [201 fall
nonlinear least-squares solution to the simultaneous second- and higher- in this category. In general, this class of approaches results in a
order cumulant matching problem. Simulations show that this approach linear solution.
yields the most accurate estimates. The area of parametric modeling via cumulant statistics [181 has

attracted considerable attention in the past few years: for a tutori:l and
two perspectives see [II and [8[-[9[, respectively, where further references
may be found. In this paper we concentrate oi fitting error and equation
error approaches to nonminimurn phase FIR system identification. We

I. INTRODUCTION review, analyze, extend and compare some of the existing approaches. We

('onsider the following finite impulse response (FIR) signal model do not consider the inverse-filter-error-based approaches since they do not
explicitly exploit the cumulant statistics. The ,iain emphasis in this paper

x(t)= , bi Iw(t-i) (1.1) is on approaches that yield explicit estimates of the FIR system
,_0 parameters, as for example in [31, [4] and [ 17] The approaches of [ I I] and

where the observations of tie signal x(t) are, in general, noisy: [21)] lead to "implicit" parameter estimates . y do not directly simat
b(i)'s. Moreover, we do not also consider ti (infinite impluse resixmseI

yVI) = xtt) + VII). (1.2) systems which are also of significant practical an,' theoretical interest.

In the above equations, the driving noise sequence [It)) is not observed.
%Moreover, the sequence 1,sst)j is assumed to be ii.d., non-Gaussian and II. EXPLICIT PARAMETER ESTIMATION VIA
/er-mean wkith iLs third cumulant nonzero. The nicastrement noise EQUATION ERROR FORMULATION
sequence [v Ii is also asJIItIid t0 he id., possibly non-Gaussian, zero- In this section we analyze the approaches of [2[,13],[41 and [14]. and
niean and independecnt of !',otfl. Let (32 and (72 (,,note tle %ariancc.s Inicati and independent o viv . L~,et OZ , ani d denot e tauiws Iho offer some extensions and generalizations. It is shown that tile rc.nr-ive
,u iu ants of ,it) and vst i-nI\. tiely, . The focus of tli, d iper is the version of the approach of [21-13] does not necessariI ikpb, th

prblmen of recovering the clficuents b(i)'s ,tven a sample function if the consistency of their least-squares version, and more siQnifi an tly, thc

iibservatiins over N cbnsceutic instants. This pro blem i, of considerable least-squares version as formulated in [21-131 (and as further anal /cd and

intcrest in gcophysical sienal processing 1121, digiil conIIIiiications recursified in 101 and 17]) leads to tiased estimates in the Irescne of i.i.d.
tmeastiireenieti noise. We show the 'arlous ways to auenuceiu ie Ilulitar[11), and astrononmical signal processing [14. equations in the least-squares approach ol [21,131 to obi i ,un:a,', .1

In thu, paper w . are (n'curmed with the situation whcre the systell parameter Cstimates. Finally, we show that the approes h ol I ., ,Iiuii ci al
I I , alloued to be nofnnnniiinm phase A vist majority ot the literature [141 that has been niTnuCkCd III [4 1,can be dMi i e a thc eeii~'rlhluttiuori
eal', A ith iiniliuutn h.c stem-, only. extension, dilscuised here.

A' ...... h,, the ah.': problcm of nonmnunmunn phase 1-1k sscm il.A Fundanental Relations
identi )~c'itfon may be divided into two broad categcrics: nonp:iralntr.. For the sl te 11.) we hasc
anl p:iriuinctri. 'I ii, vii r Loincerii 1ih the pI ard' nli, ;iiprio , I,'

fir in [is.l) li uu;i ,' , if parlivr alilrnuaehies i'r il, e .tt nl := 1) \)x(lt+ lr)ic+t-t-t
'.iuhar.,iuieriL iI .'i , , I: r i - reader to [I I



= hd~~zh~~zm)= hk)lk-rio 1q1 11.13; Alternative Derivations of the Algorithms of 141,[141
k>O A recursive methou and then a least-squares version of it has been

where presented in 12) and (31 based on the relations (2.8) with m=0. Later a
dillkrcnt closed-form solution was proposed in 141 based on entirely

gk~rm - b(klblk+mi, (2.2) different arguments. It turns out that the results of 141 were already

y3.A:=Ejw1(k)). and mt is an integer constant. Let G(,:mn) denote the z- available in [141, The approach (if [41 mimics the approach of 1141. We
transtormt of the sequence (g(k~m)1, andi let Ci,(z-,mI denote thle inow present two different derivations of thc results of [41 and 1141: one

tranfor ofthethid-odercumlantseqenc {e 5 (TT~tt)) Thn ~ based on (2.8) and the other based on (2. 10). The point is that the relations
easfor tof tbhe that-re uuat euneC,-,Tn)-Te ti (2.8) and (2.10) are "rich" enough to yield several interesting results. Useeasy O Csblththatof (2,8) and (2.10)) leads to a unified approach to the algorithms of 121-[41

C1(x)= Bi' -1 )I,' (;m~i (2.3) and 1141.

Gzm):B~) Iz ~z I= gk~)b-kq k),k It has been shown in [4[ and [ 14] that

kot) k () b(k)= 3 ,(q,k)e 3 ,(qlJ) , k=0,1, -q. (.1
Thec aaue orek,,;r bncoon is viven by To derive these relations via (2.8), consider (2.8) with T=-q and let in take

r,()=Ejxsw~ 3 values in the interval [lq]. Then wve have from (2.8)
r~t)= ~t~~tT =ck -k)b~+)2 b(0)b(mn)r,(.-q) = E b(0)c 3 (-q,-q+m)

and its i-transftirn is leading to
B) Blt/) (2.5) b(m) = ( 3 (qq m=I, 1I - ,q). (2.12)

Usin (23) ad (.5 with m=, the following relationship (for ni=10) r(

was discovered in 121,01. Eliminate B(z_ I )from (2.3) and (2.5) to get If we assume b(0)= I (as in [1), then E7=, (-qplc3,(-q,-q) I .Substitute

B =- Sx w.[o 2 Bi(,)]J = C5 ,(Z;m)]-Yj.G~z;m) pt this value of E in (2.12) to obtaitt

=> G~z~m)S~, elBz)C;,(z~nm) (2.6) b(m) =Cx(q-M)-C3 qm

w here V:=(52 y 1. In1 the time-domnain, for rn=O (2.6) becomes C3x (-I,--q) eC5(qI)
which is exactly as (2.11).

b- (k) r, (T-k) = C : k) c I x -k,T--k). (2-7) Now we dlerive (2.11) via (z.10). Take m0=f), mt=m and T=-q in
kit k~t(2.11)) to obtain

Clearly, there is no rcjson to restrict oneself to m=0 as has beet dlone it] ()~~ 3 (..q 2 0e 5 -,qm
121,131 . For mAO, 12.0t becomes (b()3-q- =2()3,q-qm

q q leading to (b(0):= 1)
bt bikk+tnr,(I-ki = F b hk)C3,5 t-k,T-k+m). (2.9)c 3 (q--m)_e(qm

kC3ti (-qt)M ____________

Without loss of any generality. we take (as in 121,13 ] NO): = 1. Thleni ( 2.9) 6() C3.(-q,-q) c3 , (q,.0)
ha-,s, when viewed as an equatiotn litnear in the unknown paramecters. (q. which is exactly as (2.11). Alternatively, set T=2q in 2.0 to obtain

tU+( unknowns; bkb' k+nm) andi Ib4~l unknowns Eh(k). b(gI)b(q+tn )C35 (g,g+mit) = h(q)b(q+M0 )C3 ,qg+rn 1 )
Another basic cti of recursions (not to be found in [21,131) results whenCI

we look at the itrclatiinships between two different 1-1) cuniulant leading to
slices. Considcr (2 ) for tsso ditkerent values of m to obtain tb(q+m )C3,(--q,Mit) = b)(q+M 0 )C3 x(-q,Ml).

yj B)/ 1 .i = , ,z:m0)jIG(z-,mtt)I C3(Z;mt )IG(t~mj fl (2.9) The above equation will yield (2.11) for appropriate selection of thle

triim which it lollfo-A that (fI-notTi-i): values for nno and mt.

1 qIn the presence of id. imeasurenient noise, by Rema~rk 2.1, (2.11)
Y g~k~m1 I c,. (T-k.T-k4-tn,( E g~k~mo) C3,(T-k,T-k+in, holds true when C3,(q~m) is replaced with ciy(cl~m).

k qk.) IL.C An Algorithm based on Autocorrelations and c(q,kI
Y bhi k k me 5  T-k,T-k+m0) The relations (2.11) do not exploit the seetini-order statistics. We now
k 0 present an algorithm that uses both r5 It) and C3y(q TI, (7i< _ lIn tile

= bk. sk o c 1 5 -k.t-k ~ 1 (2.1)) presence of i.i.d. measurenient noise, we exclude r,(l) and still obtainh~k..!,k - llj c, (Tk.-~mlconsistent solution. This algori thmt is new. It is offered as an alternative to
I, , the approach of Section 11.11 when oine wishes to use the second-order

Remark 2.1. A, i, c-fi l'y (1.2), iine dues not obscrsc \ s' directlv, statistics also.
Therelire. in (2 .5, and 1211.we have tii repilace e. (rT 2 atnd r,(t) bhTebssofti loitmi 28. e gt
CT Ti I2 iand ri ii. re-.fsv tisely. It tile presence of the tieurcrricteTebssonhsaloih s.) et ,~i (2.8 tot iibti
n710sW. we hlaec r, iTi- r, (T) Only for Tt1, and C3 , (Ti ,T2 )=C y (Tk.T2 i tinly
if T,;tl for at lea-it coter il iir -=2. I Note that ry(T )=r, (T)+(-i6&1) atnd b(h'ig,(T) = C b(k)c3 5 (T-k.T-k+qI.
cAi,(tT ~i .T, )'~ 6ct (T, I where 6(T) is the Krotecker delta. k ()

I flis rcstrictitti muitt 're hotricd for (2.X) and (2.111) to) be slihd Aslien the With b((I):= I, we rewrite the abose relationsN as
statistics if I Sit)l ire rCjlLct Asith the statistics of [>0)1l. hinf turtn.q
Implies that '2.8, iii(2. I )1 annot be useid for certain value t lacgs. LI Y_ b(k)e 3 , (T-k, T-k+I -il E'r, IT) = -C3, (T, T+g) (2.13)

k4l
Remark 2.2. lIn pris ti~e A here only a samplle sequecnce o(tic lie s data
is asziailcl. we r.-pLiu ihe ..trite cuinulants by their satmple is eracs. It where E::=b(gI)/v. We let -(I -AT q iii (2.13) if v~tl)-) in i 1.2) else take
i, ito qiok shiO Ow (it iaintlild eninuaants converge with pruibabilii\ on -q T<-lI and I T~g. We have g+ I unknowns b(I 1I, tb(2i .. bh(g. ati C,

i-x1) o iw tw -irm~in, a N- Jand 
2 q (or, 2g-l ) equations. The stilutioin can be oubtainedh either in

I -AIi Iii Is tr : .ii ii lia ns asN ~closed, form by tiili/in g q eguatiotis, or by least- square s by us"ing all of the
In Is sl,-l u 1 1an 2.))0) 'Ail bIe asci, for a sartety tI . lic> of iii, 2q equatiotns.

Ill ,o- J1 t. IT I, l,' -.- evral linear, f eutierui paralltetvr , .501ilioi Closed-Form Soltionl : Set '[=-q in (2.13) to obtain

c 1,(-q, )
- rI-) -c35 (1,l0h) >C-.21
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Next set t=-q+1I in (2.13) and use (2.14) to obtain 'e 3 ,1-1,-I) 0 0 i r,(- Ij

b(I)C3 ,(-q.0) -E' r,(-q+) =-C 3 ,(--q+1,1) C3() C3 .(-l -1) -r( ,b(I~ e ) r. ( 218

=> b() I E' r, (-q+ I)-C 3 (-q+1,) Ie 3 , (-q,0). (2.15) 0(. 1  C3, (1,1) -r,(0)I j~ (~ 1(1 ]0 l
Continuing this way we can successively obtain b(k) (l! k!q) by using 2,n1,)L
the previously obtained b(m) for 1:5m-k-I and E', and (2.13) wit Assume (without loss of any generality) that 0a y3 = so) that true E is 1.
z=-q+k. The solution so obtained is well-conditioned in that the only Then (2.18) becomes

division done is done through c3,j-q,0) which is nonzero for an NIA(q) 00 e
model. Finally, we obtain b(q) by use of (2.13) with r=q. 2 I bI1)I 2 (2.19)

Least-Squares Solution : We can rewrite (2.13) in the matrix formn as 0 [ 1 b2 (1) 0(for -q1- an1 ~q i
-q! ! - and1! ~q)Now it is easy to see that (2.19) does not have a unique solution since the

A b c (2.16) ran k of the matrix on the left side of (2.19) is two instead of three as
where claimed in [21J[3[. The solution to (2.19) is E=l, and £b(1)=b 2 (1)t

b = c'b( ) b() b(I)I" =(q+I)-olum VC~orarbitrary finite real number. The, minimum-norm solution is e=l and
b = c (1)b(2 .. b~l T= (i-l-coumoVtZt~rb(1)=0 -- an inconsistent solution. On the other hand, it is straightforward

C= C 3 (- q,0) C3J(- ,--) .. C3  (-q,--q+l1) 0 .. 0 to use the closed-form, recursive solution of 121 to obtain

A = 2qx(qs-1) matrix appropriately delinred. r. esiaeo(-rq) = r,(1) = trevlef,
The above equation yields a unique solution as can be seen by the earlier c3 ,(-q) C3,(-l)

cloed-ormsoltio.b(q) = b(I) = estimate of b(I) = = I = true value of b( Il
It is interesting to observe that the above least-squares solution utili/es e3,,-l )the same slice of the third-order cumulants, namely, c, Ix(q, k) (O: k!q) (or I h olwn ewl etitorevst h es-qae eso

equivalently, C3,(-q,-q+k) (0 k! q) ) as that used by the algorithmn Intefloigw4ilrsrc urevst es-qae eso
Section [l.B. In addition, it also uses the autocorrelations r,(T) (l! vq). because that is what has been found to be practical (see [21. [31, 16] and
Besides, we have redun 1-incy in that we have q+1 unknowns and 2 q1 [7], for example) compared to the recursive, closed-form solution w hich is
equations. Intuitively, use of extra information (second-order statistics) numerically ill -conditioned.
and of overdetermined set of equations should lead to more accurate We will now consider noisy observations. From (1.2), ry(liw=r,(t)
parameter estimates compared to the approach of [41,[14]. only if C;40, in Lhe presence of i.i.d. measurement noise. Returning to

It ought to be emphasized that the above approaches (Sections 11.8 and (2,17), it follows that we can use it only for .- ~ 1and q+I T 2q
I.C) will work well only if one knows the exact value of q. If the true stnce (2.17) tnvolves rx(O) for 0 T!q. Therefore, in the noisy data case,

value of q is overestimated, then C3,(q,k)=_) for q>q0 (=true value) we end up with 2q equations and 2q+1 unknowns !That is, we have an
leading to totally erroneous estimates. underdeterrnined system. This leads to inconsistency, contrary to the

claims of [1 and [3].
lID. On the Approach or [21.[1] In 131 several examples have been presented with Gaussian

An algorithm that has attracted considerable attention recently is now measurement noise. Presumably, they have been executed by replacing
discussed. It has been proposedl in 12],[31, and analyzed in [6] and r,(T) with ry(oc) in (2.17) and by using (2.17) for -qt2q. We now
recursifted in [7]. This approach is based on utilizing the statistics r1 (t) consider an example to investigate the asymptotic bias introducedl owing
(0: T!q) and C3v(T,T) (-~~.to the lack of availability of r5 (O). We assume that the true statistics are

In [21,[31 a recursive, closed-form solution for parameter estimation available, i.e., N (record length) -

f .or NIA models has been presented by use of the autocorrelations and the Consider the system
diagonal' third-order cumulant slice. We note that the closed-form

solution as given in ]21 does not always work in that it involves division x(k) = w(k) + 1.5w(k-l) - 0.75w(k-2) + 0.5w(k-3l (2.20)
by zero for some choices of the FIR models. Also, the approach does not y(k) = x(k) + v(k)
extend to the 4th- (and higher-) order statistics. Subsequently in [2!, the (~)=,E_
closed-form, recursive solution has been used to justify the consistentcy Take E~wk10 Ew(k)]=l, and E(W3(k))=2 ((w(k)) is one-sided
(uniqlueness) of the Solution to a least-squares version of the same exponential). Take ]v(k)) to be zero-mean, i.i.d. Gaussian. The true output

statisuics were computed by use of(2.1) and (2.4). The following solutionsproblem. We show that the consistency of the closed-formn solution does were obtained for different values of the signal -to-noise ratios (SNR) by
not necessarily imply consistency of the least-squares solution. We also use of the procedure of 121,13 1:
Show that the least-squares version will -it'ld biased Solution itt the
presence of the mearsuretnent noise whereas the recursive, closed-formn True Values: r = 0.500, b(l) 1.5M1(, b(2) =-(1.750, b) 10.51)0
solution is unhiased (whenever it yields unique solution). Esatk21C5e at SNR=- 0.50), N I) 1.5M1, b)= -41.750.

As noted earlier, the basis of this algorithm is (2.8) with m=0 leading W() = 0.5M(
toEsutuiies t SNR=1/61 t (1.505, hbll 1.461, b(12) = -01.7 '2,

r,(t) + Y b2 1k)rft-k1 = E C3,(t,r) + Y_ [ch(k)]e 3,(T-k,t--k) (2.171 ( (.9
k- k tl Estipisoes (it SNVR=1(1 e 1)54 I . Elsti mates of No 's taitled

where we have used the fact that b(0):=l - In the least-squares version of" because the estiniatc of h (3) tumned out to be negative ())001061ti81.
[21.11,] 12.17) is parametrized with 2q+1 unknowns: C, b2(k) and eh(kl [Recall that. if) [3). hi):= sign c~ /lfF~lr+~
(1I-k,-q) and (2.17) is used with -q!-t !2q (3q+l equations). In contast.
the recursive closed- form solution parametries (2.1I7) with ql+ I Nest We turn to the problemtt of "ftixsing' the al goritini of I] it
unknowns: E antI b~k)f I <_k q) and it alsit uses (2.41 in addi tion it) 12. 17). obtain tinbiased c~tinnto:
Therefore, it IS diffilt to See wkhv the consistency of the closetkl-fi rnt ILE. Moidifications toi the Approach or] 2.131
version wtuld Imply [ic cornistency of the least-squares versin.n I
clainted iii 121,131. 13w Nvie premise htere is that we wish ito rctatt the use of (2.1Ian

still otint conisistent paratmeter estimiates {t-ie [tie as.imption that thc
H ere IS a coon "teres amp) e to the ':uppiom of [ic ahNv a-c t.rt it S. modl o rdler qt is known). As d isctissedl in Sectiont 11.1), alter deletiit ii

Contsitder an MAt'l) mtodel: equa t ns Inovintg r (0)) -intl c15 1(l0f (see also Remta~rk 2.1 . Itic t' 10t

q I , Nill I I1.V~tl,). with 2qf eqittt tis :ioj 2q+l untknOTIiwS. Tht a. we base to :11tttetttet j2.1 7)
F- hi, satripe. thileCasisqitars appoach to soitig 0 U17 laiii lot ' with sonic addiiritial set of)equations. Wc itow 'ticeet a mecthiti: titt that

this, foillowing 12].])], si stolve (2,17 ior threec variables u., hI 1. itadt)crlac xN~

rhl II tisino 17 lfior - 1 , (idier 12,1)i with Int 0 attd mlo=(I lc~iitg tot
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biq)c,(,) qb(i)C3('-,T'q)=C3 ,(T,,f;+q) (21) teRemark 3.1. In light of the above example, a closer examination of
b~qept.- ~ '11 3 5 (ti~theq approach of tIll]I reveals that it may be possible to fix the above

problem. We suggest that in [I l,Sect. IlIA] one should tike
Consider (.2.21) for -q! T -l and l! vsq in conjunction with (2.17) for i=1,2, -- ,+L 2 +1 in (16) instead of i=l,2, - -LtL+L 2 as suggested

- t-Iand +ItX.Then we have 4q equations and 2q+2 in [I11]. That is, we should also use an additional set of equations. In ihe
unknowAns: V. b2(i0, ENiO(lt~) and b(q). We can solve (2.21) and noisy data case, take i=2,3,. -. .L,+L 2 +1 in (16) which would exclude
(2.17) recursively for the given lags without using the constraints; the zero-lag cumulants. Similar modification applies to [11I,Eqn. (24)].
h-fi)=(b6il/C)2,.etc. For example, set ct=-q in (2.21) to obtain T'his modification when applied to the MACI) model considered above.

b ef =C 3,(-q,.0) = c ,('-q, 0) leads Pto the recursion

e1,(-q.--q) cls(-q ,--q) al C3, (-r+i,-C+ I+i) =--C3J-t,-r+ I) for 'r=l,2, -. -p. (3.2)
Next set -s -q+l Ii 1,2.21) and use (2.22) to obtain

b2 )c, -,-)= c3, -q--1, 1) - b(q) Ch (-q+ ,-q+1) Now one can solve for ?i 's, at least in principle. 0

=> h2(1 = C'h(-q± 1,1) -b(q) c3 , (-qv1 -'+ I) /c35 (-q,--22 Since the ARMA/AR modeling of FIR models does not lead directly to
2 (i)the estimates of the MA parameters which is the objective of this paper.

Continuing this way we can successively obtain b(i (1! tq) by using we will not further consider this class of approaches.
the previously obtained b(q) and b2(m) ( n-l.The solution so
obtained is well-conditioned in that the only division done is done through IVPRMTRET AIO VA
c i,(-q.--q) which is nonzero for an MA(q) model. Next consider (2.17). IIV. PAAEROR FORIMUATIONVI
Since W(k) have been obtained by the above procedure, we can now FITN ERO FRM L IN
recursively peel offe and C b(k) by use- of T=-q,-q+l, In this section we briefly review and analyze the approaches of [10]

The above recursive solution justifies the uniqueness of a leat-squares and [171. The basic approach is to estimate the model parameters by
.solution to (2.21) and (2.17) with the lag values as stated earlier. As matehing (in a least squares sense) the estimated data statistics with t

disussd n (1 nd 3 , oe oul pefe aleat-quaesformulation front model statistics. The approaches considered in this section differ only in
discusmedina nd [3epoine olrfraes-qae the set of statistics chosen for the purpose of nonlinear least squares

matehing.

Ill. IMPLICIT PARAMETER ESTIMATION VIA The most general approach is that of [171 which we now outline.
EQUATION ERROR FORMULATION Define the (q+4)-vector 0 of the unknown model parameters as

In this section we take a brief look at the approaches of Nikias and his 0:wb(I) b(2) --. b(q) ow 23 2v7v 41

associates, see [I1], ( 1l], (201 and references therein. Their approaches Choose 6 to minimize the cost
involve ARMA or AR modeling of an FIR model. As is the case for the (2

apprachs dscused in Section 11, the approaches of Nikias et al. yield "W U()+X3
N

0

closecd-formt "global" solution. Moreover, unlike [21-[41, they make use of where X>0 is scalar and
more than a single slice of the cumulants. On the other hand the second- 0
order statistics are not used for parameter estimation. More importantly, JtN,(0)=0.5 1: [ ry(t 10) - i,(t) [2 (4.3)
the solution is not obtained in terms of the MIA parameters ( b(i)'s in (1.1) t=-q

)rather one solves for the "autoregressive parameters" of an 0 0
"(aYMptotically) equivalent" noncausal AR model [20]. or an J2N( 0 ) =0.5 Y Y, I C3 ,(tl ,t2 10)- Z3y(tt ,t2) 12 (4.4)

"(asymptotically) equivalent" ARMA model [111. This is clearly I, =-q t2 =t,

ineffictent (nron-parsimonious) if the main objective is to estimate the MA ryt0)Eykyk)1) (4.5)
parameters, particularly if some of the system zeros are close to the unit N()0=Eyk~+ 0

irciec. As .we show below, in- the presence of the non-Gaussian iyl 1) ykykt t )(4.6)
measurement noise, the approaches of Nikias et al. will yield biasedr 5 )=(N)X ykykt (t0
estimiates tof the "implicit' parameters (i.e., the parameters of the k-~

ARMANI/oncausal AR models). C3y(tt .t2 10) = Efy(k)(k+t1)y(k+1 2 ) 10) (4.7,

Consider the noisy measurements as given by (1.2). In this case the ~ yt, 2 l=(I N , ~~~~1 )~~ 2  48

equations (14) and (16, of [ IlIl are not necessarily valid for the third-order yti12=IN Y ykyktYk2)08

cumulants of the noisy observations. As discussed in Remark 2.1, one kN

must exclude the zero-lag ciulants in (14) and (16) of [Ill for them to N, = max(l ,-t 1,-t 2 ), N2 = mtn(N,N+t1 ,N+t2 ). (4.9 t
remain valid. Now if this is not done then we will obtain biased estimates Note that iy(t) and E~y(tlt 2) are the sampled autocorrelation and third-
since c,,(fj.0l;c,, (0,0i. If we exclude all the equations (141 atid (10) of order autocumulant functions, respectively, of the given observations

Ill1 that involve these zero-laIg cutnulants then w-e may get an fy(k), 1 k N) -

underdctcrnine] systert of equatiotis (as in Section lI),. We show this
by a simple example. The positive scalar X acts as a weight that maintains a balance between

the contributions of the second' and the third- order cumulants. WNe choose
L.et (1=1 ili (I . I i(n let the single zero lie inside the unit circle. Then Xas follows

in the notation oif11 wel bas L, 1-=1I atnd L.20. Suppose that we take 0 ,,1 -
p;It) in I I l. 1qn. 10)1 i.e.- we iissise to model the %MAl I) tnidel by a X ( 5 1) 12] ) f [_ I6(lt1, 12) 2i(4. 101
,twhic AR!NIAf 10).) (i~e.. AR I O, i model. l'he approiach of [ II I conists of r

estirtiating these AR p~araIlieters fromi the third order ctitmilants of the i

t'~ers atw, n We rew rite I I IEqs. 1-:)l as with the "nomtinal' value of Xo<= I. The above choice is inotisaied by the
P ~desire to equally penalize errors in matching the estimated (sampe)PCi

c . ,,-~ - -c,, f-r,-p, for T0Jor > 12,3. correlation and tcutulant functions, respectively. lvie di~st tl' aorc
choice alici mik-ei the relative nsiiihiptr errors initrita to aiv Sal e of

-Alte r- a s arc tis)- dc nil .\AR panranie er, ii p= 10. The foin he idata.

tIpr ii( h hits hcc it'~s' in tII-I lke the lagp pairs (T.p) for i=L 2 +k The cost function (4.2) was first propiosed in 1 171 for ARMA itifl
I :wds' s p T j+ I I I 1±2 I, -1 I. I or the %l.-\f I rItislel ittdcr fitting following the approaches involving corrclattion tmatching i(sCc

it iIr es's lii' rdc Ii to , I (.) Norw none (it tle'.%i sale references 1291-130I in ] 171). As wkas show&n bs- means Ai a niitioii
U,.)d Ill I 'I A 'A0''lit jl o 1iii11, C(0.1),~ 'Thius wi' base a1 systeiC exanmple in [17j, the cost function is also siiitthle fur HIR side)

A r i I I II,! I, I u r l i 4 r I, I t i) el's ire i to k lilde the! e.-ri-Etc tdi t itatloll: ( the analystIs of I 17 also goes throiielt A i oiic oiilIpc

11Wd I't modnifications.) Earlier, ii, 1101, a difllc'reit vCrsiiin if 14.2) til been)

Ih, i ,;,h ' I I,, fr'i . o Ili, dtl ,,s' fi.w i, III,- It priiosc'if. Ili I101. it has been suggested that the uii~ksowttf parainitet
isIi f r 1 Ht Iil ilplk-) Aocs~i~ R llmdcl,. hot's an V'iqmu y be selected to mniitiie



12 Although we dealt with only the third-order statistics, the material
6y(t,t)- c 3y(ttl0) 2 (4.11) presented in this paper goes through for the fourth (and higher) order

cumulants with "obvious" modifications.
where 0 is now a (q+l)-vector. The performance of this estimator has
never been illustrated either through simulations or through analysis. We did not address the problem of system order selection which is of
Moreover, consistency of the resulting estimator has also not been shown. utmost importance for any practical application of the results ol this paper.
In contrast, the consistency of the parameter estimator resulting from the Standard methods that utilize only the second-order statistics may be used

criterion (4.2) is very easy to establish: for example, use the results of for system order selection; see, e.g., [ IIj and [ 17 .

discussed in Section II. Finally, for large-order systems, an IIR system may provide a more

In Section V we compare these two approaches via a simulation parsimonious description of the observed series. For some existing

example after modifying (4.11) to include the measurement noise approaches, see [1]-[31, [71-[91, [171 and [211-[251.

cumulant term. The optimization approach that was used for the results
presented in Section V is the same as outlined in [17] (see also 1191).

Remark 4.1. We note that the two-step approach discussed in [10] REFERENCES
and [17] will not work for noisy MA models. The two-step approach
involves fitting a minimum-phase MA model in the first step. It is well- [1] C.L. Nikias and M.R. Raghuveer, "Bispectrum estimation: A digital
known that MA signal-plus-noise models are not identifiable from the signal processing framework," IEEE Proc.. vol. 75, pp. 869-891,
second-order statistics. Therefore, the first-step fails for noisy modcls; July 1987.
hence, the two-step approach fails. This is in marked contrast to the cases [2] G.B. Giannakis, "Signal processing via higher-order statistics,"
of AR and (strictly proper) ARMA models where the first-step of the two- Ph.D. Dissertation, Dept. of Electrical Eng., Univ. of Southern
step approach always works [171. 0 California, July 1986.

V. SIMULATION EXAMPLE [3] G.B. Giannakis, J.M. Mendel, and W. Wang, "ARMA modeling
using cumulant and autoorrelation statistics," in Proc. 1987

Consider the following MA(5) signal-in-noise model: ICASSP, pp. 61-64, Dallas, TX, April 1987. (Also in IEEE Trans.

x(t) w(t) + 0.1 w(t-I ) - 1.87 w(t-2) + 3.02 w(t-3) ASSP, March 1989.)

1.435 wit-4) + 0.49 wit-5) (5.11 41 G.B. Giannakis, "Cumulants: A powerful tool in signal processing,"0 (Proc. IEEE (Lett.), vol. 75, pp. 1333-1334, Sept. 1987.

y(t) = x(t) + v(t) (5.2) [5] J.K. Tugnait, "Comments on: 'Cumulants: A powerful tool in signal

In terms of (1.1) we have b(0)= I., b(l)=0.1, b(2)=-1.87, b(3)=3.02, b(4)=- processing' ," Proc. IEEE (Lett.), vol. 77, 1989 (to appear).
1.435 and b(5-0.49. The sequences w(t)[ and {v(t)[ consist of mutually
independent, zero-mean, i.i.d. exponential random variables with 2=1I .  [6] B. Porat and B. Friedlander, "Performance analysis of parameter
and . The statistics of v(t) were chosen to generate two sets of estimation algorithms based on high-order moments," Intern. J.

Adaptive Control Signal Proc appear in 1989. (See also Prec.
observations: one with the signal-to-noise ratio (SNR) of - (i.e., v(t)-=0) 1988 ICASSP, pp. 2412-2415, April 1988.)
and the other with SNR=10. (a,=1.5927 and y2==4.0199).

[7] B. Friedlander and B. Porat, "Adaptive ITR algorithms based on
We have compared the GM approach [21,131 with the approach given high-order statistics," in Proc. 21st Asilomar Con. Circuits.

in 4n] and with the fitting error based approaches of [171 (criterion (4.2) Systems, Computers, Pacific Grove, CA, Nov. 1987.
with Xo=1) and of Lii and Rosenblatt [10] (criterion (4.11) ). Ten
independent realizations o'" the signal were generated with record length [8] J.M. Mendel, "Use of higher-order statistics in signal processing and
of N= 1024 for each realization. As stated earlier, two sets of observations system theory: A short perspective," presented at the 1987 AlIAES
wcre generated: to one set no observation noise was added, and to the Conf., Phoenix, AZ,June 15-19, 1987.
other set exponential noise was added to yield an SNR=10. [9] J.M. Mendel, "Use ofhigher-order statistics in signal processing and

Tables I and 2 show the results of our simulations. We show the system theory: An update," presented at SPIE Conf Advanced
arithmetic mean and one standard deviation of the parameter estimates Algorithms Architectures for Signal Processing II1, San Diego, CA,
averaged over 10 Monte Carlo runs for each approach. Table 1 depicts the Aug. 1988.
results for SNR= and Table 2 shows the results for SNR=10. The initial [10 K.S. Lii and NI. Rosenblatt, "Deconvolution and estimation of
guesses for the fitting error based approaches were chosen as follows for transfer function phase and cocfticients for nongaussian linear
each of the 10 runs: processes," Annals of Statistics, vol. 10, pp. 1195-1208, 1982.

b(i) = 0. (1<i<5), b(0)=1., o., = 1.0, a, = Y3v = 0.1. [111 C.L. Nikias, "ARMA bispectrum approach to nonmmimnum phase

For the GM approach, yvc calculated the estimates as recommended in [21 system identification," IEEE Trans. Acoustics, Speech, Signal
and [31 unless we had b2(i)<O, in which case we took b(i)=cb(i)/i. Processing, vol. ASSP-36, pp. 513-524, April 1988.

It is seen from the two tables that the approach of [171 outpcrfornis [12] D.G. Stone, "Wavelet estimation," Proc. IEEE. vol. 72, pp. 1394-

that of [1(1]. This is intuitively not surprising since the criterion (4.2) uses 1402, Oct. 1984.

all the relevant satistics whereas the criterion (4.11) does not use the (131 A. Benveniste and M. Goursat, "Blind equalizers," IFIE ran.
second-order statistics and it also restricts ikelf to the I-D "diagonal" Communications. vol. COM-32, pp. 871-88 3, Aug. 1984.
cunulants C3y(tt). The GM approach i[21.[ 3]) yields very high variance
estimates. Note that the GM approach uses both the second-order statistics [14] A.W. Lohmann, G. Weigelt and B. Wirmiter, "Speckle masking in
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TABLE I

Parameter Estimates : SNR b()0):=l, 10 Monte Carlo runs, N = 1024 = data length in each run.

Parameter Estimates
Approach ol 1171 Approach of [101 Approach of [3[ Approach of 14]

parameter true value mean mean mean mean
(std. dcv.) (std. dev.) (std. dev.) (std. dcv.)

b - O()1 0.1150 0.1758 2.1)552 -1.3469
(0.100) (0.3030) (1 7.7030) (2.12(6)

b(2) - 1.870N) -1.9002 -2.0)3)13 -7.3755 2.1431
(0.3082) (0.7337) (26.7141) 4.(X)95)

6(3) 3.02(W) 3.0627 3.2694 10.9016 - 1.62s 1
1.0.4217) (0.8669) (29.4864) (3.8538)

b(4) -1.4350 -1.4709 -1.5712 -7.5998 -2.1412
10.2679) (1.7666) (20.3394) (5.6231)

h(5) 1149(8) 0.4987 0.5343 2.4662 2.104
(0.1419) (0.3788) (5.7858) 7.8522)

1.11.04) 0.9449
( 12490)

2.1)0() 1.8266 1.6472

(0.5521 ) (0.7290)
0.N)(00) 1.25221

(I. 2314)
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Multi-Window Bispectrum Estimates

David J. Thomson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract S( f ) df E { dX( f ) dX( f2 )} I)
In many applications where the use of higher-order spec-
tra i:- desirable, use of conventional m,,thods is hampered for (f1 + 12) rod 1 0 and zero otherwise. The
by iack of data or, equivalently, by the e\olutionary spectrum, via the Wiener-Khintchine theorem, is a

nature of the process. Here we describe a multiple- frequency-domain decomposition of the second moments

window method for computing consistent estimates of of the process

the bispectrum from a short segment of the process. In 2 2
multiple-window methods the information in a narrow E { x( t ) x( t + T ) } = f e 2 Xft S( f ) df
band is summarized by the coefficients of its expansion -1/

in Slepian sequences (discrete prolate spheroidal Similarly, the bispectrum is defined to be
sequences). Bispectrum estimates are then formed either
by averaging what are effectively complex demodulates
over time, or by averaging products of such expansions for (fI +f2 +f3 ) "ood I = 0 and zero otherwise. In
centered at frequencies ft, f2, and - fI - f2 over a analogy with the Wiener-Khintchine theorem, the hispc-
three-dimensional element of the frequency domain. trum is an expansioa of the third moments
Either choice reduces to a weighted average of products ,, 1
of the expansion coefficients. E{.(t)x(t +c )x(t+t,2 )} = f f B(f J12)

1. Introduction i2it(fj t, +f -,
e "df df2 .

Higher-order spectra, or polyspectra, are used for
the statistical characterization of stationary non-Gaussian Unfortunately, while such analytic properties of polys-

stochastic processes, see e.g. Ilaubrich 11965] or Nikias pectra are well known and, as shown by Hasselmann

& Raghuveer 11987]. Of these, the simplest is the et.al. [19631, are similar to second-order theory. statisti-

bispectrum, which is a frequency domain expansion of cal properties of estimates of polyspectra are not well

the third moments of the process. In this paper we pro- understood and do not resemble those of the second-

pose a non-parametric multiple-window estimate of order theory. The fundamenal problem is that the esti-

bispectra. mate mimicking (2) is anlticonsi'-tent. that is it's variance
increases with sample size. Specifically, given a sample

W- assume a stationary, discrete-time process with
unit sampl ng time, and consequently a Cramer, or spec- pc i ' ' s t N herdisfrete

tral rc-rccj.ta~n f tle ataprocess with "simple" spectrum and th~eir dis crete
tr~t, r~rcchtti~mof he ataFouiier transform

V( t ,,: X( (' = x- ' n- = [t

v ith frt'qwm.ncm,. f, reharded as a continuOns variablc on the estimation analog of (1 ), the pcriodh,rwn.
, 7 .Ind extended periodically. The spectral den-

"t; I, kl eIrld to he P f(/ ) = N ( ) )



again for .f +f'2) mod I = 0, is an asymptotically 2. Multiple-Windowv Estimation of Bispctra
unbiased estimate of the spectrum. For J _v, } Gaussian In the following we give two multiple window
thle variance of the pcriodogram, I 5(J I ) .S( 2 ), is bispectrum estimates the first is a time-average of pro-
ndcendent of thle sample size N so the estimate is ducts of complex demodulates, the second is an average

ince:a'stent, over a cube in three-dimensional frequency space of pro-
Similarly, the analog of (2), the biperiodo gram, ducts of the best local least-squitres approximations to

I dX. In the former, the use of Slepian sequences allows
P2 /'I ,f = - (h )(J'2 )J(f 3 ) one to generate a complex demodulate for the entire

length of the series; it is consequently more efficient
again for ( fl +f2 +]3 ) Iod 1 0, is an asymptoti- than filter forms whose output sequence is shorter than
cally unbiased estimate of the bispectrum. For Gaussian the length of the original series by the duration of the
data and distinct frequencies the variance of the filter's impulse response. ill iic 'Ilac], di t ti cc-
biperiodogram is N.S(f. )S(J2 )S(f; ), that is the vari- dimensional integral is done subject to the usual bispec-
ance is proportional to sample size, so the estimator is trum requirement that the three frequencies sum to zero,
anticonsistcn t. so the integration reduces to two dimensions.

The property of anticonsistency in an estimator As above, we assume a sample
suggests that one should find a better estimator. { x( 0 ) , x( N - I ) } with sample size N finite.
Because the variance of the simple biperiodogram is pro- We choose a frequency resolution W, 0 < W </2 and
portional to sample size, an obvious approach is to assume that the spectrum and bispectrum do not depart
divide the sample into J smaller subsamples of length L, significantly from linear functions of frequency over
estimate a biperiodogram on each subsample, and aver- bandwidths of less than W, which typically is in the
ace thle results. The variance of the average is then pro- range 3/N to 20/N. We also assume that the first
portional to 1. ' J. The disad),antage of this approach is moment of dX( f ) is zero or that the process contains
that frequency resolution is also reduced from 1 / N to no periodic components. We denote the number of
S' L. *'Subdivide and average" estimates of the expansion coefficients necessary to describe the informa-

bispectrum have traditionally been calculated by three tion in a band (f- W, f + W ) by K with
related methods: vweighted Fourier transforms of sample K= L 2 N WJ. We use the notation of Slepian's
third moments, e.g. Rao and Gabr 119841, frequency- [19781 paper in the following and refer to the n t h equa-
domain averages, e.g. Lii, Rosenblatt, and Van Atta tion of that paper as S[n]. Thus the k th discrete prolate
119761: and time averages of complex demodulates, e.g. spheroidal sequence, or Slepian sequence, defined in
Ilinich and Clay 119681 or Godfrey 119651; plus combi- S[18] is vk)( N, W ). We define the corresponding
nations of these. While these methods are asymptoti- wave function Vk( f ) by
cally equivalent, their sample properties can be dramati- N-I
cally different as described by in luber et al [19711: Vk( f Y _ vn)(N,W) e , (3)
'all the pitfalls known from ordinary spectrum analysis n=O
occur here too, some of then with new twists." As which is a complex version of SI 10) with
usual, these problems are more serious when only a N -1
Ohort data record is available and are exacerbated if the 1 -(f 2 L2f
spectrum has a large dynamic range or has a complicated
frequency dependence. Moreover, estimates of higher The Fourier transform (3) has two inverses:
m)mnent, are susceptibility to both outliers and legiti-
mate extreme values. These are far more common, and i21jc(N,W) 1 V ( ' ) e i2 ' " d 14)
serious, in the non-Gaussian data where polyspectral " .4)
e,tindms are neded than they are with Gaussian
pro cssc,. These effects, combined with a dirth of following S[291, with the eigenvalues Xk defined in
robu ,t e stimators t or bispectra, may he responsible for S[I 81, and

!he poor reputation of bispectra and the generally

pessiii c conclusion in IBrillinger 119651. "YJ(N"'W) J , ( ) ,i2it , dt (5)

as in S1281.



Multiple-window methods, Thomson [1982], isolate "Time Average" Multiple-Window Estimates
the energy in a band (f - W, f + VV ) and express itC Consider estimating the bispectrum by averaging
as an orthogonal expansion of Slepian functions. As is products of the complex demodulates (8) over time
well known, this has approximate dimensionality
A = 2NV and is the best possible L 2 approximation to B(fl f2 ) W 1 x(f1 ;n)x(f 2 ;n)x(f 3 ;n)
the bandlimiting projection operator on the given time n-0
span. For a narrow band of width V' about a frequency where, as usual, (fI +f2 +f3) mod I 0, and 7 is a

f w e fo rm an e stim ate o f the ob serva b le p art o f the nor m a s u s ta n df i b lo w in (0 , ) .d U i ngCramer representation normalizing constant defined below in (12). Using
Crame rerrepresentation (8) for the complex demodulates, this

d (t + V ) = E -- .k( f ) Vk( v ) dv (6) becomes
k=0 Kf 2 I K-I

B(f1. 2) - Y_ -ij(fi)-ik(f2)
for I V I < W. The expansion coefficients i k( f ) are Yj,k,1=0estimated by weighting the raw eigencoefficients i 1 (f 3 )P(j,k,1) (9)

N -1 .-l fE 3 )(kjk ) 9
Yk (f ) e e-i2irfn n(N. W) x( n ) (7) where

n=0 N-I

for k 0, 1, ,K-1 as described in Thomson P(j,k,l) = Y v(J)(NW)v,( ! ) (NW)v"n)(N,W)
11982], that is i k(f) = dk(f) Yk(f). As will be seen n=0
in the following, obtaining low variance bispectrum esti- Integral representations for P are in the appendix, and
mates requires that large time-bandwidth products be some statistics of the estimate (9) are derived below.
used. Consequently, the eigenvalues and weights are
both nearly I so differences between the Xk's and Yk's "Frequency Average" Estimates
can be safely ignored, as can terms in 1 - Xk. The Taking the inverse estimate of the orthogonal incre-
time series corresponding to (6), the "complex demodu- ment process (6) in the three bands and integrating over
late," is a volume element concentrated on Trj I < W, another

w estimate of the bispectrum is
x(f;t) eiTft f e i 2 t dX( f + v ) W w

-w Bf(fI,f2) = "f f J I X(ft- TIA()dx(f 2 +n)
or -W- W- W

K-N dX(f 3 +113 ) C(r1 Il 2,Tl 3) (10)
where C is a symmetric weight function of its threek =t)

arguments. Substituting (6) in (10), and interchanging
orders of integration and summation, this estimate may
be written in the same form as (9). that is as a triple sum
of the eigencoefficients times the integral of a weighted
product of the three Slepian functions. Taking uniform
weighting throughout the volume and integrating subject
to the constraint (cta + 112 +3) mod 1 = 0 shows
the latter, via the appendix. to be equivalent to (9).



Standardization and Variance The variance of (9) for Gaussian data and distinct

To find the expected va!ue of these estimates it is frequencies, using (1), is approximately
useful to write (7) as EG{ B(f 1 ,f2)12 } = '- 2S(ft )S(f 2 )S(f 3 ) (13)

y = , dX( f - If, (1) 3 jV vj 1

C,,,; t.,ti n (i) in ( P pives n .- "
u 1 -',K-I '2 V, '/

P= -k P( 1 1k,) f f f I j( t)Vk (2) if the spectrum varies slowly within a bandwidth W of
j.k,= -- =- 0- the three frequencies. Noting that the terms in brackets

,'( 3 ),WX(fI -4 )dX(f2-42)dX(f- f2- 3) { } of (12) sum to y gives

The expected value of the product of the three dX's is, EG I 1B(fl ,f2)12 } -S(fI )S(f 2 )S(f 3 ) •
by the definition of the bispectrum (2), 7

B(f_1 -4 1f2 -2) (+1+ 2 -3) d 3  Approximating the inner sum in (13) by Mercer's
theorem, rotating coordinates, and crudely approximating

so the outer sums by integrals, one obtains

1 -I E ___ 1
E=-(f I- J., P(j,k,l) f f Vj(4t) EG{ B(fS,f2)I}- S(fI)S(f 2 )S(f 3 ) (14)

Y j,k, I=O - -V2  3NW/

k (42 ) 1( +2 ) B(fI -4 1f2 -;2 so, for fixed W, the estimate is consistent.

Even though (9) is an unbiased consistent estimator
If, as assumed, the bispectrum varies slowly within the of the bispectrum, the W 2 term in the denominator of

(14) may cause the variance to be very large. Moreover,
because the bispectrum of Gaussian processes is identi-

f f Vj( I ) Vk('2 ) V I( I + 2) d 1 dF 2  cally zero, it is unreasonable to expect a variance as
-'/- _'l small as predicted by (14) in cases where the bispectrum
the integral representation (A7) for P. Defining is of interest; further, the estimates should be expected to

K-j P , have a "long tailed" distribution, and consequently
S= P p(j,k.1) (12) robust estimation prcedures are essential. These may

j.k.l=0 be constructed from the consistent estimators given here,

gives E B(f I,f2)} - B(f If2) so the estimate is by, for example, using M estimates on the results from

approximately unbiased. overlapping subsections.



Appendix: Integral Representations of P(j,k,l) References
Beginning with the basic definition of the P coeffi-

cient B iBrillinger, D.R., [19651 An Introduction to Polyspectra,
Ann. Math. Statist. 36, pp 1351-74.N-I

P(j,k,l) = Z v(nj(NW) vnf)(NW) vI,' ) (N,W) Godfrey, M.D. 11965], An Exploratory Study of the Bi-
n=O Spectrum of Economic Time Series, Appl. Statist. 14, pp

one may use either of the representations (4) or (5) for 18-69.

each of the three Slepian sequences Using (4) gives Ha,;selmann, K., W. Mupr, and G M:,cDonald. Bispec-

w 11 w tra of Ocean Waves, pp 125-39 of Time Series

P(jkI) f f f Vj(4 )Vk( 2) Analysis, M. Rosenblatt, Ed., J. Wiley & Sons, 1963.

-j. _w- w- w Haubrich, R.A. [19651, Earth Noise, 5 to 500 Millicvcles

V1 ( 3) KN(-( +42 +43)) d4 3  per Second, 1: Spectral Stationarity, Normality, and
Nonlinearity, J. Geophys. Res. 70, pp 1415-27.

where the kernel KN is the sum of exponentials Hinich, M.J. and C.S. Clay [1968], The Application of

N-I ei21tn(, 1 +12+3) the Discrete Fourier Transform in the Estimation of
K,( - (1 + 2 + 3)) = e Power Spectra, Coherence, and Bispectra of Geophysi-

n= 0cal Data, Rev. of Geophysics 6, pp 347-63.

Again there is a choice of which integration to do first; Huber, P.J., B. Kleiner, T. Gasser, and G. Dumermuth
we choose that over 43. Recalling the basic integral [1971], Statistical Methods for Investigating Phase Rela-
equation of the Slepian functions, tions in Stationary Stochastic Processes, IEEE Trans. on

wV Audio and Electroacoustics AU-19, pp 78-86.
-k Vk(f) = f Kx(f-v) Vk(v)dv Nikias, C.L. & M.R.Raghuveer 119871, Bispectrum Esti-

-w
mation: A Digital Signal Processing Framework, Proc.

one obtains IEEE 75, pp 869-91.
w w V ( I) Vk(4 2 ) 2 ii, K.S., M. Rosenblatt, and C. Van Atta, Bispectral

-w-w J V I +2) measurements in turbulence, J. Fluid Mech., vol 77. part
_____k 1, pp 45-62, 1976.

where we have used the tact that V 1 ( - ) = V1( ) Rao. T.S. & M.M. Gabr [1984], An Introduction to
With integrals over [ -/2, / ) one uses the identity Bispectral Analysis and Bilinear Time Series Models,

/2 Springer-Verlag, New York.
Vk(f) f KN(f-V) Vk(v)dv Slepian, D. [1978] Prolate Spheroidal Wave Functions,

-1/ Fourier Analysis, and Uncertainty- V: The Discrete
in place of the integral equation to obtain Case, Bell System Tech. J., vol 57, pp 1371-1430.

A1 '/_ Thomson, D.J. [1982] Spectrum Estimation and tiar-
P(jk,l) = f f Vj( )Vk(42)V( I + 2 )d . monic Analysis, Proc. IEEE, vol 70, pp 1055-96.

Using (4) and (5) together gives a third form. Note
that if j + k + I is odd P is zero by symmetry and also
that P(j,kl) is svnmetric in its arguments. Thus there

are 6 combinations for j, k, and I distinct, and 3 if two
are equal. Consequently it is only necessary to compute
P for 05I<K, j<-k<K, and k:_l< K so, for
example, with K = 10 only 110 distinct terms of the
I(XX) are needed.
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ABSI RACI

A composite linear model is proposed, which converts from non-Gauss ian i . i. d . processes into a non-
;laussian stationarV stochastic processes with given third-order cumulant spectrum and with white power
spectrum. The design for the model is based on the fact that a type of finite-impulse-response linear
system With non-G;aussian i.i.d. input process makes an output process whose third order autocorrelations
exist onl% tor special time lags. Arbitrary third order autocorrelation function can he obtained by some
superposition of independent output processes of this type. Results of uumerical experiments confirm
thi-n fact. Ihis model requires at most 21 '+41.+! Input i.i.d. processes independent of one another, for
the third order autocorrelation function with the largest time lag L. With sufficient large L., a process
with desired bispectrum can be made by this model.

INTRODUCTION

There are various phenomena whose time evolutions can not be modelled as Glaussian processes, and the
s;tudy rot non-Gaussian processes is important. The third order statistic, are often treated for analyses
,N non-Gaussian stationary atochastic processes ([1 - 181 and many otht r papers ). Some works treated
only tie third order moment or the third order cumulant of the stochastj variable on a single time
instant (C91 etc. ). Other works investigated the third order statistics for dynamic characteristics of
stochastic proces.se;, such as the third order autocurrelation function, the third order cumulant function

for three time instaots ) and the bispectrum. These statistics are easily translated from one to
another.

In these works, some hind of models generating non-Gaussian processes has been used. The Iineae model
which assumes a linear system with a non-Gaussian i.i.d. input process, has been frequently used (['],[51,
[ 101 - 13] etc. ) this model is a direct extension of the Gaussian liHear model which generates a
stochastic process with given power spectrum from an i.i.d. process. It is very simple and convenient,
and many t ols for ;aussian case is directly applicable there. Moreover, the analysis of the third order
.statistics is an analogous one Co the second order statistics for the linear model. However, the
bispectrum of this model is in a form of triple product of the transfer function of the linear system [3],

te] , which is of a very restricted class. In general, the variety of bispectra is greater, and more
general model are required. Several non-linear models have been tried. Subba Rao L14] and Gabr L15)
investigatedthe hispectra of the processes made by a cretain bilinear model. Mao & Lin [lijand Toda &
:sui [1l1 did non-linear autoregressive models. Earlier, Brillinger (L3], pp.40-41) derived a general
eaprorsion for the bispestrum of the processes generated by the Volterra functional expansion model,
though it is ti , r plicated to solve the inver-e problem which find out appropriate parameters for a
presyribed hispectrum. As another trial, the authors studied for Markovian-switched two Gaussian
pr cess:-e!s, hot thi -, madel produced only a very :p.-Vcial type of bispectra.
Hcre we con- i er te prohlem whether there exists5 any simple model which produces stationary processes
with airhbitrar, hispeutrum or iot. tn general, .onlinear models have a grater possihilitv for making
wider cI a:s 'i prf esses, ih,weve r , they of tell aicke the problem much camp I ica ted, and the inve rse
prh Iem tr,magie n third raer st,atistics to parameter!; seems to be hardly solvable. In this study, we
r: t, -eek 'ie : its -sltion inl a class of composite Linear models. A certain linear system with coi

Si.i.d inp'rt prie: makes aIi it put statlonary process whose third order cumu lant vanishes
a:.' ept Ir,r pe ia rbiir iiI o tw, time lags. his t(act enables us to construct a composite linear
:s-i ] i,.'h ,)ra duio. ari rts hi spectrum, fby a superps it ions oif manv independent stch output processes.

li th 1,ol lwiry ;,, tirs, the ,'lntrucLin ol the composite linear nl.el is explained. It is also

:-.rl'ii tait tolr pr a'-;c- rle I"', this madcl arc n t distfroimle f trl white nloises ,oily bl their power

"ii-tra.. na il' ,- i- u Ilts it numeri(al experimonts are giveh.
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>,, pr i se aId coprehi:,- .c treLews to: the htigher order ,ttitW , o st.itionar\' processes have
toiici [I -l and [I pi) 0] hors L moont ion only some ne~sit Was cutut the third order

Let IQ De 3 -taLiotarv di rt e-Lie stochisati, process. Fle tiri order atiocore lo 1 untiON
or in. , LL ttr third del 1-11iiilait fIMIctioi areutet d s

t C A t X X , +tr;ttt T It 'tt 't r cor C I x, "t I[,

re>VsCti'.-e.. hecause cr the -. ationarit'. both are not dependent on t, but oit on two time lag "'t .

Lt Ejo.\ . then they are identical to each other. For simplicity, in the following sections we
"..I consider only such cas - so that we need not distingisn one irom tie other. Fro the definition,

1,e Lhe I 1itwiilg S.YmMetrv. k Similarlo f: toe Cumulant tunction (2).)

i.-. t t _t = Ti(_C. -C =, R dt . = ji1 -C ' ,- ,) = R (-r, ,-r,) (i)

r ,etr. stho'..s that the third order autocorrelation function is completely speciiled by t he vaLue,
,n' o tn .... :tatt plene .uci that O) jT _, . .ien the third order autocirrelations exist only within a
tio>te regi,n o: time lags where the largest absolute value of time lag is L, then it is shown from tire
',ne cr. thit it van ishes at least outside the hexagon contigulated by the sia lines

T=1T: r= 1h, Q-11=1t (.)

rion th, third order .Nuoulant function (2 satisfv some condition (I1,12) its discrete- time Fourier

troclor exists and is calLed hispectrut.

uij (3, 2 e £ T r't(' i ell4§['- _ ) 5'E r ,' -' - -T t, W
2 -I I J

Ti-DO T.'-a.

It i-V _t-;,eridic ;oth for WO and Oi, and it has tie io, lowing svtimetrv.

W1 ,3 o ,,-W, , = j- 0 , WIz f (2 f t C3ii I = f i(k -iw2) = f3(-Wll-W 2 ,W .) hQ-i

k.e, n A olelr s.stem is treated, the bispectra have the folowing convenient relation. Let ftIIl, W))

he tiA ,ispectru: ";r tile input, fit( i ,W) he that of the output and h((l) he tile transfer function of the

is -t 5 e., then

( .'w- A ,A] t L ) ellj fi( , Al wile re W3j -'1 (7,8)

LASIC LINEAR S ':7 Y USED p:. i! MODlEL

; :. c t.,tp o a linear s.stems H(+,) and H
-
'

d r
, whose impilse responses are

I 
i  

t i 
' 

r d I -I if t
=
d{' I ',thierwi:se I i = -1 if t~d ) 't~

Sothlerwise )

:s-it L " t ait S are

-"!) 3 (-,d)i ii'C"d ¢l itz { - ' no = 1 - z
d i 1 , 10)

r t ti<i, '..t r A~ e:.:)- (1 3)

r, w ide- the case, where the input o these liinear systems are nton-il115 M.iai .i.d. processes.

.titr : . i .. , pr, ..... ' .tt- , L - and L[ IJ i , tien its itispectrun: is a constant,

pi'v, tt, , 't i,,ot ,,! toe ' iter 
( +

"
'e  

with the input {it) is

•L.u ', h , .a H, d) W 5 ' t I + '', '! -I  + o(i ), + d+ i IU

.(.3 .' ' IO I ' 1"< . i 1 . '., wi. .- t.i 
L 

I th th iup t . ,ikes ill ',ut:,ut whose

j 11 dw ' d-'d~



Iie" .steiMs wit h i lde pendenit i. i .d input proces-cs now are c,-bincd as fol lows( wiLh '*' deiting

tile convo I Lut ion operat I tor );

l~, + ,- h(+,s) u r r + s) + r) - u + --
S- + r) *+,.*) ,* ) (-,r,+,, * I,r . s rs

hr "l * ur + hir h(' * s -)) (17)

Id I -+•l+d v,-,d) (18)r' u(- ,- r +, s -r - (+ 8)

where u +s {u-+'r'+'s)} , ui-,r,+,s) L , u 1 -r-'slJ ( r,s:integers, respectively )

S{v t nteger, respectively) are non-l;aussilin i .i. d processes independent of one another and

iave the com1no mean (), common variance - and the common third order cumulant K3 . [ie bispectrum of the
oUtputs o1 these combined 'units' are the following. i-or

vi rs zr z s 
+ zr + z, + (I

,'d lor . d

wile re

z e.:p-)_ J, W_ exp(-j: Z_ eip)+l+j( W. - (21,22,23)

Ihe inv\erse discrete time Fourier transforms of (I) and (20) become the third order autocorrelation
O, t i a)tlut processes if these 'units . Ihell any of r, s and d is not zero, we have

83 ( it r=s ald ('1,T2)Q Sla(r) )

4 K i it 1rs a[nd ( 1 T , 'S 1 ( l-r) 3

4K 3  i ris alind (T , ) S2(r,s)

0 otherwise )

T' -K3  if ( 1',,T E S d ) (25
0 otherwise 1

*e re

- . r,rl, (-r,Ui~ , (il,-r), (0,r), (r,0), (-r,-r } (26)

-2r,- ), - ,0 (O, 2 r) (27)

a' r,s) 4 (iiil)), 1l,r), (r,0), (-r,-r), iO,s), (s,UI, l-s,-s), (r+s,0), (0,r+s), (-r-s,-r-s)

ir,s), (s,r), (-s,r-s), (-r,sr,, s-r,-r), (r-s,-s) (28)

d, 0 .[,,0), (0 , d) (d , ), -d ,-d)) f29)

11le-le il')W that the Mit)uts k Yr'S) a to e tird order au oorre lit ions o11V at severa
respective specilic comb inations of two time Lags. 1iis fact suggests us an possibility tilat some
superposition of the se independent process1 make all arbIitrary hispactruili. For latter convenience, here
wt dei ine ,inthcr a]n- auissia .i.i.d, process wt wj to th mean 0, tile variance 0'2 ald tile third order
cm,.lnt M5, which is independent of 4(,r,t,s t ,s r,s. integers) and iv( 

' d ) st t (d ; intege r . Its

third (,rder alticorre l;iton foluctiou is obviously

( therwie I

'I{lIIF> i:(i 2 ., I h i

I: tih- >, ti , , , to rpyrpi e the ait lpl I . i tieit d . I ir-t, we show that thle Iol o i 1 lot .
I the ; tr'. t i t tile lol wi 11i1 re I t i-i i)i d,- l - toe third c)rder it rrrela tioi tiiact io 1 or all'

-t.!t ;I.i i-. rte-ti ne tht ', tic rioe:.U
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r (1
r 7 £o jt It) )1)8 ,Sr'CIs

it (T1T -0E,(,t

Sot he rwise 1 32)

t .tri 'rdI -iu& or rela tion t unc tion e s t i on Iy fo r f in ite t ime tags tiesmi i m e

rno szb

I, i.. 1) .5th1 (32) -(3 ) s hows thait: ift O3< s<r

_K r syr~ 2 -2 - "

2RRzrfs (TIT-) 8(3 4)

-.Kj hRrs t r)u (T- 4 lj"It - C X R , 2 ) 3))

It r=-,=0,

4-3 N5 Dr,s;T1 ~, 'W~2, T, .t)3h)

Ihe relations (jit-(37) shows that an arbitrary third order autocorrelation functlon can be written as

su:: of th!- Oo55 OS 's ( r,s:integers ), z( )} 's ( d: integer )and w defined in the previous

i c t ion. The fo ilwiiog method '-or model construction is based on the well known fact that the curnulant
'ta sum of jndependeolt stochastic variables is identical to the sum of the respective cumulatt of toe

a desired third order autocorrelation function R# (T)), we define a process ltIas

L 2L

7£ E Cr-; (r t + T ~)13(d) + H 1/3 w3H)
rt L. t

- Ad-k, k) (if L<d$2L,

4-1C) L
( Rd-k,k) + R # (d,k) + Z R (d,k) K- dO (if 'dl

if d=0 ( 41)

\ (-di,-d S if -Lid& I

X L~ . lmn. ~ R! k,J) - F_ K (k,k) + R-((h,h)J

aI . t n, tiirtd ordeI- -olitcorre 1 tin i( ltknt iii ) kat is given by

To J it Ti 'E- )t is cointained in the hesagon def mned in (4)

. t:;_ .t dc-ir thiird ir aote ,rrelation fiinction has nonzero values only for ;iiite
-11a t~l ;, 1,,e, ( has thme I st des Ired th ird orde r otocori e at iont Iunc t ion.

'.0. ~ i '-t"ii, r- , s ispuctra ire arbitrarily chosen if their Fourier series
-i .,,. t 1 Iiitels I n II eneral, with I.,D , its, hispecLtrili is idenitical to the lesiredt

2 7



[lie teal red input i. id. pro,:e-.-es is counted out as ol lows.

tt .... . 21L2 - 2L +

oe i -not required because 41 1) . ) Recently, the authors tound our another composite
I inoar v::I -O~ ceit re., only about I , - inrput processes, which is riot mentioned here.

2

TrlE POWER SPECIVRClN DI> TFE GENERATED PROCESS BY TFlE M1ODEL

The pr --- lo has veryl special power spectrum which is the same as that of white noises . N ow we

~ ri :. ~. ~ c roceses{~~rs~ r~s:inte~ers and 4 5 d~ (d: integer Ihave the

0 l2 r) s r + ( 1 +zr)( 1 _2s)(l+z-r)(l..7s)

constant ( 44)

2) + I *Kl 3

+r I-r 1+:d) + I -i constant 1 (45)

1 Nte t - tot-,vanish .I Murr-.ver the process ltwtI alsn has a constant power specro:,. In

tire.rthe independent processes whose power spectra are all constants are summed. .fhis means-
that the p .-'' k.ui has a constant power spectrum. In other words, 'colorless' of the second order, but
wi th deaite , -1,,r of the third order . lhis property may enable us to apply this model for sim,,ulations

or res i,- -- iecs of the Ilnear prodc Another possible application may be for the cancellation
o)I non~ai i.,

CIaISOF 'NUMERICAL EXPERIMENTS

Actu~l rk t ied to make numerical !- me processes with given third oidet aotocorrelation tunctions
tv. our FT11 -I, ve used pseudorandom -or ..- i instead of samples from i.i.d. processes. The third order

aujtnccrr it u!tnction of an exampl ic i i able 1 ( where some part is omitted, which are known f rom the
':mrt r ) il thle table, every (1 i, - ,i evioulv desired value is put under respective ilijased

e "t i me te U :ed Ifromi 25000 segments o;nt 16 of the generated process hy the third order aiverag'ed
per iodl"cr 1:: tal ib tis result shows bar~ the prescrihed third order autocorre lation funcr i.v; is os

rea 1ie. t was. ilso turned out tiiot tcipfwer spectral estimate of the generated process i- very flat.
W'e tried - tier 4iven third order ant.L orro 1at ion functions, and obtained reasonable reSoLIL-.

(ON C 1, i D IN(; R EMA RK S

A c.:yH-i-,e~ir mode I is propo.sed. xii ich gencrate~ a process with given third order atitoc .r ilot iln
not 1 a.. ic -1 if i. fea torc oll-i-,del is that the gene rated process has the samre pa.

ap-t ri - ait, he e pi~pe' *,.,. ore con firmed by Some numerical experiments. ortid I
resilire - ;.- d ipot pro 1>-t 0 ide Ccndent of one another, and it may be difficult . i drel t

,I ptp I r t Piltited out that from any desired blispectrom We co11

- ,od, whin h Iai icci-, ny a process having it.

kF Cli F 1EN CFS

L] i... (i I A teo(iry v ti e st im i t e! I k- ti i o r der aL-c Iv

I rr' mu C I ha brr i s N'ew Yo rk: . Ic. u pp. I F-i 8Ra, i Ifo
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ESTIMATION OF FREQUENCY RESPONSE AND
INTERMODULATION DISTORTION FROM BISPECTRA

XV X. Zhang NTIR Raghiuveer
S iangliai Uiniversityv of iJechnology Electrical Engineering Department

149 Yan (hang Road, Shanghai Rochester Institute of TLechinology

Peop. Rep. of China Rochester, N.. 14623

ABSTR.ACT two-tonie test for ?ntcrinodulation (TM) dlotno 2 .liti a
two-tone test, a sigiial consistinig of the sum of two sile

I i ,'rvood i at irm dist fort ion m~easuirement s are anl implort alit waves at different frequiencies, is provided as a ii input to

aspect of thle design anil test of commiunication systenis. the system,. anrd thle ratio of the outpuit power at new fre-

This paper provides a method based onl the Volterra repre- quericies to, the out put power at the input frequencies is

sent at ion of nonlinear systems to measure the intermodu- takeni as the measure of nonlinearity. Standardl proceduires

lation distortion due to secoiid order itonlinearities. As we specify the frequencies (wich depends oil thle actual ap-

sho)w, this app~roach enahles ins to comnpute the distortion plication; for example, for a .3-kHz voice chiaiinel. they' are

at more frequency points, in the frequency plane than does 1500 liz and 25001) Lz) for the pair of sine waves to lie used

thIe convenitionial two- t,ne test. Two methlods, one based ii tfie test. Ini thle case of second order nIon huesrities. thle

mu cross-correlation amid cross- thiird mnomenits, aiid another, IAI products are at the second harnmonics of thle input fre-

based oii cross-spectrum and cross- bispect runi, are devel- qiienicies and at the sumn andh difference frequencies; the DC
opedl. component is iiot taken into account in measuring TMI dis-

tortion. lii this paper, a modeling approach based on the

1 INTRODUCTION Volterra repiresentation [3, 4] for nonlinear systems is de-
veloped. The motivation for this, is provided by the fa ct

P'ircticall y every cornmunication system in volves subsys- that for a quadratic nrilimicarity with memory, , the IA1 dis-

teiis wich re ominllylinar tnieinivriait (ii) A ortion is a functzon of the frequencies used in the. twio-tone
oplar appch ominenl vinear st mesigns have) frA test. A4 conmplete pictuore ef the contributioni of the non-

poui aric aroasclo to tf lie de sire o esis oprvie are linearity is provided by looking at different points in the

Svst cii input which conrsist s (if a surn of sine waves, and frequency plane. As we show iii this paper, the Volterra

lien firnd thle cross-power spectrum bet ween the input and representation provides a model which enables us to comn-

w~itit The cross-power spectrum will enable us to find pute tine IT distortions as a funiction of frequemicy pair. rhe

samples of the frequency response at frequencies present in measurement involves computation of cross-spectra (cross-

the in put signal TI1. Thie procedure is considerably sinipdi- correla tioii) arid cross-bispectra (cross-cu mula Tit). The cur-

ieb choosing inpuit frequencies which are integer multi- rel-ation based method is termed "time- doTi in 1", since only

piesa, of onre frequte lie a nd thlen using t he DTi). Ini actual operations iii the timire domnaini are i nvolvxed.' Tie ietboil iii-

implinetai~nsysem- donotbehve ntielyas TI vs- vtilvirig the DFT is termed "frequency-domain" for obvious

eros sau air elemrerit of noriliriari lv is almost always the're, reasons. That thme identification of rsoriliriearitiCs is made

I 'sirally, thle nonlinearity earn be characterized as being of easier uisinig polyspectra, is well documented 5-.What

O)rder two. "Ihis is especially true oif systems where signals we prvie is anl apuproach quite analogous t( the popular

ar" t rarnslated between basebarid arid passband, arid mod- frequency- respoirse mreasurerment using sinle waINvs. exceput

ilat ion arid demnoduilat ion is (lone at oile rir mrore stages. thlit iii addition to thre frequency response of thle linear part.

Sinirp. a ku-v cliaracteristic of a nounlinria r systemr is thlit the cont ribrition of the rnonlinea r part is roesi ier as well.

when provided with siullisouidah inputs, It pirovides oirtlilts Our interest, is in qluadratic nonilinearity, and thierefiore we

whih rritsi frqieicvcoriiomr'it nrr oiial i will deal with Volterra kernels of orders uric anld two onil.
hi~~~~~~~~~~~~~h~)i uiat rqelvcmoet 11 rn,1Yi v Onv discrete systemns are dealt with. Most resultis are given

n~u .pro(iedires harv IWen devisedh t(, miirii tw h fmi

rjikit ii of noiinihiarities. uisinig sinuiiiitil i giiis. 1 I withriit pronof,-- these are availale with tire alitbirs.

lrarinoii rhatortioir (] 111)) niiensiinnnilrisnt ,' viny % ,r ilinil,mi

a li prarficahll %. r int rm ,ihrt,rv% tex? lv k fmii i inincar

I lo Ielrs drals wit hr Ii 1)t Yio uin hr apprnu lu I i, h



2 MATHEMATICAL (L 2)> /I,.'AA,)

DEVELOPMENT cs(,Ao- p 1A,,](1

Consider a secmnd order Volter-ra .stein with input x(u) I / 2)> L;(, A,)

cosi(A, -A, )n + ,- l(AA)
y~o - >~hdr~xi, 10If we provide cos(A,n) -I cos(A,n). A, r A, as the in-

put to the system, thle resulting INI distortion (denoted by
xK (Ir, I? i [I oI ) J.( T 712) I1D1(A I .A2  at the output is given by,

I)IAj1D(A ,A ) __Nun(A,A 2 j (12)
IDen(Al A)

The nordlinear kernel is assumed to be scrnmetric i.e.

where
h .( rn , n ) = h ( n , 7) (2 )1 

1 ( A , - 2 1 ]

Nurn(Ai , A2) 1 TH2A A 1~ 1+ H( A A, 2

let y,(n) and y2( n) he the outputs of the linear and nion- and
linlear parts respectively. Then, L)en(A1 A.) vz(1/2ThII(A, )[2 H'!1(A')jfl (14)

Y(n) YI(n) 'Y2(nl) (3) 2.1 Time Domain Approach
Suppose we have It canl be sho0wn that for x(n) in (4) the c ross- correlation

bietween the input and output, r,,(-) xv E{x(n)y(n + -)I
rlu) - cos(Akn iP)(4) is gvnbI gIenb

%% here i,_ i 1-...I are independenit and uiniformly dis-
rilnuted over 10. 2- Theni, 2,()=-~IA)csA 2 -H,(X,)3 15

y,() -- > ll (A) epj(~nNotice. that only the linear component affects the cross-'()-2 [,A)epjAn 0j (5 correlation. The above expression call he modified to,

where r,,r) (1/2) 1~RealIH(A,)1 cos(A,7n)

hI (w) > l(o) exp -jwn! (6) , ngH A JsnAm] (6

'With 21 samples of r,,,(m), it is possible to solve a set of
.1 TIsunultaneous linear equations to get the real and imaginary

j.(ri v,.o 9,Parts of the frequency response at the I frequencies, and-- (, h,,)epj v,-v,) ence we call get Hip' ,2.I. When we have a
finite mrber of samples of tile input and the output, cross-

(7) correh-tion estimates can he computed. fly estimating theawhere cross- correlation at more than 21 lags, an overdetermined

11 (?1) 71 v ~ir xpi j(w, i -w~na system of equations canl be formed and the frequency re-
/12( 2sponse canl be estiniated using the piseudo-inverse of the cor-

() responding matrix. We will next look at t lie cross-cumulant

A, (i (1 seqjuence r(k,f) v Ejx(n k)x(n ,f)y)). We can show
1, A Ui 0) (9) that

(10) ( (k. f) - li, 1(A,, , A,. ) exp j(A,. k .,)+

Aiturnativelv. we ca n a-rite [AA)x'IAk
16 I.AA, x) Ak-

;(o n ~ II',A,) rcs'A,o :l. O iA)lr'', (k f) 17?)



'here , i , I ' - I) is given bv,
1f 2 ) '  l,.\ / ,f . .. ,\ , ari ., xai.

),')} .!2 A- , ,-s k i I ?(k,.k,) . E{X (k, )N(k 2)Y (k, k2 )} (25)
I )eline

16)) Rea,1(li A,.A,) j It can be shown thatt.?.{,\, ),,)(i 1) R~eaJ l - , 1 2 .A,)I ? # j1 I 1{ifl)),4( N ':8)1t.( k,,k)

N _,., , { 1 16 ) I ag I (A,., ) j (19 ) 2 ' 112(i, V i) k , - k, = 0, N /2

1 4 g _.,A,) j (, 2)I(k,k,) (k: ,k,) -(N2,0)

and (N' k)(kk,) k, N N/2,k, 1 0, Ni2
B(k, k.) and

q l ,-, ,j ,n) c s(,,ri- ny) 1 cos(nx 7ity) k, -0,k, i 0, N;2

!I.. yinn) sinni' ny) ; sin(nx Ymy) (20) (N 1/16)11,(k, k 2) k, k., z 0. N /2

(N',8)tf (,k,k,) k, k2,k, i k, , N,
Jhen. frm 17 2 kk, / 0,N!2

S,," (26)
1.2 \ )tt A, , (A_ A," .lirn.) It follows from (26) that given samples of the cross-

QI,. !A . ' _,bispectrurn or its estimates, it is possible to estimate

2 ,1,A. A, , rn, -l r 1i2()k, k,2).
Q, (, 0 I.. A,)g. I. ,-,m,,,n,)

Q, 11 ) -- , 3 SIMULATIONS
l)r,, h In 2

(21) Example 1 A true second order nonlinear system with finite
lVquai ion (21) suggest s that with 21" 2 I samples of c(rm, m 2 ), extent h,(n) and h.(n, n,) was considered with h, (0) - 0.3,
the qantities )21 , (1, and l) can, be determined by solving h,(1) = 0.1, h,(2) - 0.5, and hi(n) = 0 for all other n;
a set of linear equations. In piractice. witi actual samples of I2(0,0) -- 0.1, h,(O, 1) = h,(I1,O) = 0.6, h,(1, 1) = -0.3 and

theinput and output signals, we can substitute estimates of h(in) = 0 for all other (m,rt). Experiments were per-
th cr,)ss-cuimula nt sequetce in place of the true values. If formed to test the performance of the time and frequency

we have more than 212 , I values of the cross-cumulant se- domain methods as a function of SNR and number of seg-
ifiiinCe OIr its estimale, then all ivertetermined set of equa- melts of data. Output samples were generated by" using
til,,s call be foirmed and a )seudo inverse solution can be all input consisting of a sum of sine waves of five different
,blained. frequencies. The values of the frequencies were different for

the time and frequency domain methods. Figures land 2

2.2 Frequency Domain Approach show plots of the relative mean squared errors in estimat-
ing H(A) and H 2(AI,A 2 ) at these frequencies. The er rs

(rresp~nding expressions (an he Obtained in the frequency were measured as fractions of the true mean squared values

dunaitfi as well. Suppose ini I w- have of H,(A) and IH,(A ,, A). In both cases, 100 independent

. 2 rec-,rds of the input were generated by adding independent

n is( n Oj (22) phases generated afresh for each record. Observation noise
N - in the form of an additive Gaussian random process was

le-t Nlk) l) F x (1)), r) I)-r) ( A' Theni added. The SNR was varied f-om -20 dB to 10 dB. As
we seegood estimates of H,(.A) and H,(A,.A,) are possible

> exp~ ,% v. - k - N 2 from hoth methods at SN R close to 10 it,.I k) -' "'(23),N - os , k 0t, V 2 ()igure 3 and I show the MSEs as a function( of rtun ter,,f

data records. The nmbner of retords was varied fron 211 Ih
If VI A) is the (corresponding ,itput I)F I. tlen the (rss 200 for the time domiain, atd 50t to ItI0 for Ithe friqienc

ittr spectrum .(k)is given li. doznain. The SNR was kept at I) dh for the time-dOnlain

N ' 1, f!A-) k 0 l..Y N2 iTethod and 20 d-I for the freq,,ency domain. As call be
sA-' ) 1{ \"t) ) A-i) ' :II (A-) k I0- 2 ~ seen, Hie time-do1ain approach is mnuch less sensitive even

2 (2 ) Aat a lower SNtI{ to the numier of records, than is the fre
(2)

It,. llI ],A- ,.',," pt--an l I ' , f i . ',i? , ' -,A-. Vafit ,, ( eti (lc i i d iaiinin netlhod.

,J /I k can b f-,,ird frOrn thfo ir,,,s power qpett ruin. is .ampl • 
2 To test the Volterra approach ili tirm ,r

,.- hv,. ,-qu ;iti t l,, n wt 11. , r,'S hiipe,'lriui (which
t''~.. I , h " m ',f I l" l+, < lt ,, i p ,< r l l' k ,h !



I tr.ir g 11 T Iill sitI)iti' 11"ivr~ ilirtlear ste (1 ii.and MI R1. IRaglirrvccr. IHispect nul L.~inia-

y 71 ax 71 ( (27)tm : A- I tgital Signal Processing IFra iew% rlo. Pioct d-

r~~~totIlq ,flo illo (~)og rt, \.)I' . 75( 71):1)1. 869 89 1 JuAtly 1981.

\Wa. (1 nstdterv] Wi a 1. Aw as varied firio .0 (wt eak 91 IKI Kim and FIJ. Powers. IN Digital Method of

,r,!inr'a rwt v t, J.96 ' stronjg tiodinetarits ). 'lici truet I NII Modelinig Qriadraticall 'v INonlinear S' SfelTmS with a ci

at any lreiqti, i .% ri~r is )2.-1-' a1), stimiats of f and A cral Flarid'rr lrputit. lEA' Transaio~i n o iris

wire itt uit' ruthe freicticv lontaimi itetlioti. FivC s. .. p(,ch/. rand .Smqria /t-rn ssinti. vol. 3(;I 1 ):pp. 1758

ri'itres wecre nil. a was estimated as the mean o)f the I ttN ovemitei 1988.

cirat c en1k If A i r all frequienicies anti A was estitriateil is

irev mineri of -ltimatwl 11l k, ,Ak.) over all freqtuency pairs.

Y10l r i rrls vere generated. Vigurt- 5 shows true antd es-

liiated i A- a: ) Iool mitiil is ffotitt Inetwenu true antd

er irliate al n)rr for .1 r

r.-'r'.r~'NT10

4 CONCjLUS1IN "1 0

I t, raprrr has pr' \'ilti ati appro)adiF to estimate samples of H -n>

111' F tI IFwr t r iriuf,,rinis rrf t le li near anid nonIi near cornivirlu-

tirir kerrre" ,f a ccndir ordri rVolterra svstetit rising a suitm ,V~

4, 'iriir-idal iglials ats the imprut. 13Y usinig the V'olterra

itotleiliig nililrulet aind the estiriation priscedltres of the

paperr. it i'n i-sihie tr nieasurc intermodtilatioii ristu)rtioti

dwt- -- nrd or-drrer lionliea ri ties - Further research is being 1
,iw , rltrrraitrize tie performanice of the approrach with .~. 7
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THE RUNNING BISPECTRUM

John D. Thatcher Moeness G. Amin

Boeing Helicopter Co. Dept. of ElectricalEngineering
P. 0. Box 16838 Villanova University
Philadelphia, PA 19142 Villanova, PA 19085

-The recursive update of the bispectrum estimate which al nonrecursive windows.
is based on the 2-D Fouarier transform of the time-a-vRrage
estimates of the cimdants can be achieved using forward
and reverse sequence tnning Fr's of the data. The I. EMARD AND REVERS SEUBCE
ccqxitationally block-ihwivariance property of RFT may, RUNNIN FORIER IAMF
therefore, be extended to yield a class of recursive
FouLrier-based bispectrum estimators in which the ruiber of The Fr of a data sequence can be recursively updated
cotpu rations required to update the estimate is inieperdent with a nuiber of computations which is invariant with the
of the size of the employed 2-D lag wirdaw, data record length. Denote F(n,w) as the Fr of the set of

the data samples x(n), x(n-l),.... x(n-Nl), then [2,3]
I. INIODUCrION

then N-i
This paper introduces a conpua ionally efficient F(n, w) x(n-m)e +ju(

Fourier-based approach to real time bi-pectnxm esti-mations. TI
For...a-d and reverse sequence amning Futrier transforms m-0
(RFT) are used to define a class of interactive bispectrun
estimators in which the ruaber of carputations required to = ejW F(n-[,w) + x(n) -e JNx(n-N)
.4)date the estimate e.erv data sample is independent of
both e-ployed nrudbers of cumulants lags. Since the If the Fr is taken to the reversed sequence, x(n-N4l),
horizontal and vertical dLtensions of the 2-D lag widow x(n-N+2). x(n), then
defih the bandwidth of the spectral wirdow through which
te bispectrus is observed, the proposed class of N-1
estimators offers resolution erlvzcement without additional

com~putations. G(n,w) L- (n-N+I+m)e

Similar to the second order statistics, the

:orr.,entiornl estimation of the bispectrum is Fourier-based W .(2
and can be ob-tAint.d by taking the two dimensional (2D) = eJG(n-l,w) - eJwx(n-N) + e-- ( x(n) (2)
FPorier trassform to the time-average estimates of the 3rd
aide~r cirrlants. To tire-varvi' eror~Irmnt, however, the The conputational block-invariance of RFT is also

isctrr estimate becates t ir.-'lcpendent, and the above maintained if the data sequence is wikda by w(n) prior
O.t ,ttton 1 rcechire can he depict, d in Fig. 1. In this to transformation. As discussed in [4], w(n) should, in
Firirte, the 3-D winrdow of the tinc and the two lag general, be a summation of exporential fiuctions. In
varibles can be viewed as a sultidiensional linear time- Section III, the above two recursions (1) and (2) are ureed

'=,-ariant filter of finite or infinite region of supports to establish the corrputational lag-invariance property in
(PuS), applied to thie cu mar' otb ,.q ten s of the data. the recursive update of the bispectrum estimte.
P'ca Lse of the svtm rtrv propvt -. t, the cutn.lant in both
Is; variables r f1. only (L4]ii(L2)/2 filters are required Ill. 0OMPULaI0ALLY A-INVAIANr

(Ilt.,1±) lag rrkym. RECURIVE BISPECTM ESTD4AIRS

iii -,l projxv-ed of -ii .I stit'-tors. the 11xe timm-average estimate of the cumulant R(n,-k,-m)
r-z,r-to; h(n,k,) ;are related over ' ribles k of the daita x(n) can be presented by the convolut ion

tf i''. hO t}.I~tOr of crutpi.ti -LOi reqiired to tr'mp

.-- IT' '1W ik~rVomt to tiWe bispectrxn'm
.'(,s'tf.t of 'Ii..ent of t h ie i; K al M hk, h P.k,k

nmi , r~ l,,-ritt at t pmr ,tabt-t .f '.imEr, h is a 11I filter itmiulse regfqr-s,, ,di : ,"
,;m i] I ' rT: tut h.t, F, is.rab laries ae 'mitug to tlr OUK1mita-s o; ' (1 1' " ,

T '
. 

- m, ' l + . u: curor 'jor. l t i , r I I f" , I ,r f t rarlX fer b t iotn i;

t!.



+~1 -1i -k mxn -~xn -)~.
m ' - ' am~zi,k~m)z-i I 1'

i~i K

To avoid biased estimates H-(1km) =1, which in part -x(n-i~y7  
[b(i,k, O)x(n-i~k)!'k b(n,-k,0)x(n-i-k)Wk (8)

uis the flexibility of choosing the filter coefficients k=O +l
a's arwi b's. Equation (3) describes the system of Fig. 2
Qibose inpu~t is the cumijdant saipie. x(n)x(nTi)x(n+k) an M
outpar is the cuiuldant estimate R(n,k,m). The system ]
output arsl input can be related by the difference equation xn-T imxnim0 + b(01mxni)

R(n~kjsO - (i~k,m)R(n-i,kjin) + b(i,0,0)x 2(n- i)

i=i
The computational lag-invariance property of recursive

4 bi spectrun estimation requires the atuiter of comiputations

+ b(i,k,m)x(n-i)x(n-i+k)x(n-i+m) of A1  to be indiependent of both K andi M. If the filter
nuvring-av7erage (MA) coefficients b( i,k in) are separable

I-" sequences, i.e.,

The tiiw-depensient bispectrun estimate B is obtained b(i,k,m) = b I(i,k)b 2 (i,nt) Vi (9)

b-s taking the 2-D FT of the above equation
then A1 can be expressed in terms of 1-D) forward and
reverse sequence running FT's

P-1

B'2 n~-i~uw1 ,w2 ) + A(i,wl,w2)
i'-l 1 2 Ajiww 2) - Gl(n-i w)G(n-ic 2  + C1 (n-i,w1 )F2 (n-i,w)2 )

iee + Fpn-iw )G 2(n-i~w2) + Fl(n-i,w1 )F2(n-i,w2)

(10-a)
K K k- b 2 (i,o)x(n-i) [Gl(n-i U1) + E1(n-i,w1)]

k- -M-b (i,0)x(n-i)FG (niw + F (-~~
I=- r-=- 1 2 'n-i 2) 2 n-wJ

V ~ '4,31bikmxnixn-~~~-~) hr b 1 i,0)b 2(i0O)x 2(n-i)

1 2T/_ L X ''' 2 he
V, ar'-M i4f (7)

, twr,- K adK M are the mximum lags of interest of the FI(~ 1-, ~)- nK1

crdO~ ftlIrt iol R andl W 1~e (-jl) , W2 -'Ap(-j 2) - If the-jj-j ~ (10)

tinte 1 o f tlsc fiter zeros is lag-i dperrsent, the-n one can C ~ ~ -jw1 K ejw
1lw ~+~ _ nl)

ai'. e Us- se~lueoe of stuiations in (7) to G1(nw e Gn-w1) ~4Ke -~-

1. K M jWs " (+1

X(n- i) - -=~~~~1i+ xnimwV n'2 e ±2nl~2 x(n) -e x (n-M-l)

I-) -K r-M (10-c)

can bLG 2 (n.w 2  j G ~2o 15-~2 ) + x(inM)e -x(n-l)e 2

1T*e )-D Fr in the above equation Al(,a,~)cnb
t~,inc -tos of ote sidied Fokwier transformsas Th 1-e functions F ard G are similar to those of equations (1)

~ Mand (2) with inort differences which appear in the- sign of
the complex exponential in F arri the time. shift in G.

1 '2 in the, above equation both bpi,k) and b 2 (i~m) assumed
I'*~) 5-'syrmetry arorid de lag variables k amd m. According to

(10), four different rnning FT's are rEqTuired to calculate

.5,-5<'t~I :j~o ~A at the ith coefficient. Thoen-lore, foi- crurrrtatiorial
12 j f icie-ry'. ferwr rityh-er of coefficients of the, MA Ivart of

+ Wi, ,,,m ix- enioved filter should be used.



Sincze A is fonied fromn the functions F and G, the T T T T
cornputationai block-invariance property of RFT can be used Ai- GnG + G F n n (12)

to evaluate Al at each frequency sample ( 1 ,o2) with a

number of additions and multiplications independent of T +

both lag K and M. The coefficients bI and b2 , however, - X(n) [ IS + sl'+] (n)

must be selected consistent with the properties of the data

window w(n) of Section II. To enforce the computational where F and G are the DFT vectors of the forward and

lag-invariance property over all terms in the bispectrum reverse sequences, S - F + G, T [1 1 1 .11, and

estihate in (5), the AR coefficients should be lag- is the matrix of the bispectrum estimate for

independent so as to eliminate the need to perform the The computations of the outer products in (12) depend on L

double convolution. and, therefore, violate the lag-ixdpendence property,
Aich is always the case in DF'.

Recursive Wir- Nonrecursive Windows

For the case of a single pole filter, h(n,k,m) = The simplest FIR filter which satisfies the

(l-Y)I
n 

r,2!0 the parameters in the transfer function (4) ¢oitutationally lag-invariance property of the rtring

simplifies to q=l,p=2,b(O,m)=b(,k)=(l--y). In turn, bispectnum is the rectangular window, i.e., h(n.k,m) -

equation (5) becomes L(l)(n) -un-N)), where U(-) denotes a unit step
function. In this case, b(o,k,m) - b(Lk m) - -I. Ve MA

B(n,w ,w2) = -jB(n-lc 1 ,wV2 ) + (l-r)x(n)A(Owl> 2) (11-a) coeffieients for C<i<l are all zeroes.

,I <0,Cw1,u)2)= C(n,wjl)G(n,w2 ) + G(n,w )F(n,w2 ) (11-b) B(nw,,w2 )-B(n-l ,1 [2 )+ Nx(n)Al(Ow, w 2 )-x(n-N)A1 (N lw 2 )

+ F(n,w1 )G(n,w 2) + F(n,w1)F(n,w2) where AI(N,It22) is N - delayed version of Ai(O,cqw2).
The block diagram of the runnng bispectrum using sliding

- x(n) [;(n,. 1 ) + F(n,w1) + G(n,w2) rectangular window is shown in Figure 4.

COCNCLUJSICNS

+ F(nw 2)] + x 2(n) It is shown that forward and reverse sequence one-

dinensional running Fourier transforms of a data sequence

Tn 0- above eqation , we &-ise MK=L. Accordingly, can be used to construct a recursive algorithm for the

In 1 G2 alv equaton, w ch se i rd bispectnin estimates. In this algorithm, the rumber of
GI- G2 aid F1 - F2, which redxces the required runber of comiputations required to update the bispectrun estimate at

RF's into half. The block diagram of recursion (Ii) is e ach req iredt s pl e the is perdest t
deite n i. .each frequency sample (w,w2) is L-4ependent of the

depicted in Fig. 3. cumulant maximum lags of interests (K,M). Since the size

of the 2-D lag window defines resolutions in Fourier-based
Aecursion andtle aine boetwenrse a e p e estimation, the proposed algoridhm offers resolution

recursion aid the single pole recursive strture of th enhancement without an increase in canpitational

power spectrum represented in [1] shows an additional requirements. To siple exales we presented in which

ruTdng FT required in bispectrum estimation to account for recursive ans nn-recursive data winws are e ployed for

the additional lag variable. The extension of the proposed time-averages.

approach for bispectrum cxmputations to trispectrum may,

therefore, require rnnning three FT's of the data providirg

that the separability condition of the filter coefficients
is maintained.

For VLSI implementation of te p i. M. L. R4uveer and C. L. Nikias, "Bispectrum

'coupitationally lag-invariance translates into a size- Estimation: A Digital Si&-al Processing Frarework",

irrarim-t array processor, in which the nuber of IEE Proceedings, Jaly 1987.

pro,_ig elemert is independent of the maxianu lags of

interest. The systolic array implementation issue of the 2 A Papoulis, Signl Analysis, MGraw-Hill, Ic., New

r.triing Fourier transform is discussed in reference [5] and York, 1977.

-- 1 to s''stol ize recursive power spectrum estimators. 3. L. Rabiner and B. Gold, Theory and Applications of

Sir' PT is the basic element in both recursive power Digltal Signal Processing, Prentice-Hall, Ic.,

-sT .crn aril bispectrni estimation, devising the array Dngl Sigdl Jesey, 1975.

s' ri for the underlying problem becomes a simple Englewod Cliffs, New Jersey, 1975.

e:'nrin of tle strucrture presented in [5]. 4. M. G. Amin, "CiOputationally Lag-Invariant Recursive

*f-*. !T)is-ctrlr es:tfmte is evaluated at a tnumber of Spectrun Estimators", IEEE Transaction on Acoustics,

fj- ies q s -o the dimensions of the lag window, as Speech and Sigal Processing, December 1987,

V" 'he eos in the 2-D D.FT both F and G must be

; ,ied 11 d f w k a 5. T. E. Stacy and M. G. Amin, '"LSI array processor
!-' sp.Tced freqrencies k = aL d implmentation of a simple class of recursive spectrum

i(11? Cr then b itten in the matrixform estimators," Proceedings of the 32st Midoest Symposium

on Circuits and Syste, , Rolla, MD August 1988.
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SOME HISTORY OF THE STUDY OF HIGHER-ORDER MOMENTS AND SPECTRA

David R. Brillinger

Statistics Department, University of California, Berkeley, CA 94720

ABSTRACT Stuart (1969), for example. The moment approach in statistics is
usually identified with the name of Karl Pearson. In anticipation

Some of 'he history of the development of random process of later development of time series techniques it is to be pointed
higher-moments and spectra is set down for the period preceding out that Pearson's method of moments was largely replaced by R.
1980. Time-side and frequency-side properties are contrasted. A. Fisher's likelihood approach as the years have passed.
Some uses oi the concepts and associated techniques are men-
tioned as well as are some of the computational procedures that The joint product moment of the k-variate random variable
ha'e been employed. X = (X,..,Xk) is

EIXI . X}

1. INTRODUCTION The joint cumulant of the variate X is the combination of the
joint product moments of subsets of the components of X, that

It is not easy to set down the history of concepts used vanishes if any subset of the components is statistically indepen-
broadly throughout the sciences. The material is inevitably lim- dent of the remainder. It is also the coefficient of 01 0

k in
ited by an author's personal experience. Still it seems worth the Taylor expansion of the log moment generating function. The
attempting even if for no other reason than to induce others to set joint cumulant will be written
dow.n what they know. Since the work of the present paper is
meant to be historical rather than review, consideration will be CUe (Xi,., Xk }
restricted to the pre-1989 period. It has the additional property of vanishing for k > 2 in the case

There are a variety of "sides" from which one can discuss of jointly Gaussian variates.
the matter: theoretical-empirical, time-frequency, ordinary series - In essence what has been done in the time series case is
generalized process. discrete time - continuous time, quite simple. The product moment function of order k of the
computational-distributional, univariate-vector and so on. There process is defined by
is insufficient space and time to cover many of these aspects in
an' real detail, but a variety of aspects will be set down. m, (. . ) = E {Xt i) " X (tk ) (I)

while the cumulant function is defined by
II. SECOND-ORDER MOMENTS AND SPECTRA Ck(tt .... tk) = cur {X(t1) .... X(t,)

There will be minimal discussion of the second-order case In the case that the process is stationary one has the
for the principal concern is with the higher-order situation and simplitications
because there exists an extensive commentary concerning the
second-order case in Yaglom (1987). It is remarked that in Bril- mk(t+Ji. t+uk I1t )= mk (ut ... Uk-)

linger !1976) some specilic history of the U. S. work is set down. aPA
I tme-side '1(

+ 
I . U.. 1-,t ) = r (u t .... Ui- (2)

Two early references to empirical work with the autocovari-
ance function that will be mentioned are Hooker (1901) and Tay- That is, one deals with functions of one fewer argument.
for (1921). More insightfully however, in the stationary case the pro-

Frequencv-side cess has a spectral representation

A remarkable reference, turned up by A. M. Yaglom. is i
Einstcn ( 1914). Commentaries on this paper are given in Masani X(t f = e"XdZ(X) (3)
(96) and Yaglom (1987). An early reference to frequency-side n

analysis. pointed out in Rice (1945), is Kenrick (1929). involving the random function Z(.). (Here time has been taken to

be discrete, t = 0±l.±2.._ but this is no real restriction). This

Ill. lHt(iHER-ORDER MOMENTS AND SPECTRA representation leads directly to the delinilion of higher-order spec-
tra. The cumulant spectra, f&..), are now given by

The mtoments employed ii ;he analysis of random processes CUre d(X .. . dZ .X =
and time series are direct extensions of those oif ordinary statis-
licy Te pr,,perties of these latter are laid out in Kendall and tl(/,i + + Xk, )fk tXi. .X. -)d i 'IX, (4)
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with rl(.) the 2rt-periodic extension of the Dirac delta function. The point process case
(The concentration of the mass on the subspaces, In the case of a point process N(r) the moment measures
X1 + - + X , = 0.±2ir.:4rt. -- results from the stationarty of are defined via
the process.) The cuniulant spectrum fk may also be defined as
the Fourier transfonn of tile cumulant function of the right hand E ldN(t 1 ) ... dN(tk)) and cum (dN(t1) . dN(t k )I
side of expression (2). respectively. The point process case is notable in that when the

Consideration now turns to some historical aspects. points are isolated, the first quantity here has an interpretation as

Time-side Prob (point in (t it +,dt 1) and . and point in (tk,tk +dtk
A central idea in the time-side case is that of Kolmogorov's, The moments in the point process case are often densities

(see Shiryaev (1960)), to base analyses on the cumulant functions
rather than the product moment functions. Pk (t 1,... tk )dt I ... dtk (5)

The use of the cmunulant functions may be motivated in assuming all the r's are distinct. The functions Pk(.) have
several ways. They remove the lower order information in a appeared in a variety of guises in the physics literature over a
sense because they vanish if some proper subsets of the X(t)'s is period of many years. In particular the references Ursell (1927),
independent of the remainder. In many cases of interest they Yvon (1935), Bhaba (1950), Ramakrishnan (1950), Bogoliubov
tend to 0 for large argunents and thus have convenient analytic (1962) may be noted.
properties. They also turn up in investigations of ergodicity.
They provide a fashion by which to introduce mixing, leading to in the tona3y ase nhepr
the later development of central limit results useful in suggesting
statistical approaches. References developing these aspects N(t)=e dZ(k) (6)
include: Leonov (1960,1964), Shiryaev (1960,1963), Sinai Nx
(1960,1963) and Brillinger (1965). Shiryaev (1960) focuses on
cumilant functions. Zhurbenko (1970) introduces an alternate
form of mixing condition for example. Some comparative aspects of the time series and point pro-

Frequency-side cess cases are brought out in Brillinger (1978).

Moments of order k of the dZ are considered in the seminal
work of Blanc-Lapierre and Fortet (1953). It is interesting that in IV. TERMINOLOGY
counterdistinct;on to the second-order case, the cumulant func- J. W. Tukey has introduced many of the terms of spectral
lions do not necessaily hnme a representation as the Fourier analysis. In particular he called the spectra of a single series for
transform of a measure, see Kolmogorov (1960), Sinai (1960), k =y, 4 the bi- and ti-spectra respectively. He introduced the
that is f[ of (4) may have to be treated as a generalized function general term - potyspectrum. This word being of mixed Latin
of some type. In many cases of interest however they are proper and Greek origin, as Alan Stuart has emphasized to this writcr, it
functions. might be better to switch to eg. multispectrum. The other terms

Brillinger and Rosenblatt (1967ab) develop the result commonly employed are cutnulant spectrum and higher- or k-
cum I dr(X.). dr(X )} order spectrum. Tukey seems also to have introduced the terms
T dbifrequency and bicoherence.

A(X + " + X-,)f,(X 1 , ' . 1k-) The moment functions (1) and (5) are often called correla-

under a particular mixing condition. where tion functions in the physical sciences literature even in the case
7-I of general k.

AT(,) e

(=O V. SOME USES

and
r-1 Single series

,(I() = -1(X(t Brillinger (1965) points out several :'ses of higher-order
1_-ocumulant spectra. For example that they may b- used , extiuine

This result suggests that even had cumulant spectra not been a process for Gaussianity and that they may be used to examine a
defined in their own right, researchers would have been led to process for linearity. The later use is investigated in some detail
them as they developed the statistical properties of empirical for the k = 3 case in Subba Rao and Gabr (1980). Brillinger
Fourier transforms. (1965) also indicates how higher-order spectra might be

Brillinger (1965) and Brillinger and Rosenblatt (1967a,b) set employed in looking back at the genesis of an observed series
down estimates of cumulant spectra of general order and develop from more elementary series. Peaks in the second-order spectrum
sonic properties of those estimates. at frequencies in elementary relation are suggestive of the opera-

tion of a nonlinearity at some stage.
The case of k = 3 has been studied in some detail. In par-

ticular one may mention the works of: Tukey (1953), Tukey Van Ness (1966b) mentions how polynomial functional
(1959). MacDonald (1963). Hasselman et al. (1963). Godfrey expansions may be employed for prediction.

1965j. Rosenblatt and Van Ness (1965). VanNess (1966). Sha- Lii et al. (1976) and Rosenblatt (1978) show how bispectra
man (1966). Hinich and Clay (!968). Kleiner 1971), Subba Rao occur in connection with energy transfer between distinct fre-
and (Jabr 119f0 . A bibliography on the k = 3 case has been quencies - a phenomenon not possible with linear systems.

prt-pared 11% Tr, o ( 1991.
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Rosenblatt (1979) begins a study of how the bispectrum estimating the bispectrum by averaging third-order pc odograms
may be employed to estimate the phase function of nonGaussian based on separate time stretches of the series. This technique has
linear systems. the further advantage of allowing one to estimate the variability

As a final use, one can note that higher-order spectra appear of the estimate directly.

in the variances of estimates of lower-order moment and cumu- It may be remarked that for the last form of estimate, taper-
lant functions and so must be estimated to have indiucations of ing the data before computing the Fourier transform can be quite
the latter's uncertainty, crucial.

In the point process case, Davies (1977) makes use of the
product densities to examine foi Poissonness. VII. EXTENSIONS
System identification There are near-immediate extensions of the concepts of

In his book, Wiener (1958) sets down a "polynomial" higher-order moments and spectra to spatial. particle, generalized
representation for a system with Gaussian white noise input and and stationary increment processes. Streater and Wightman
discusses the analysis and synthesis of the system. (1964) define them in an abstract quantum mechanical situation.

Tick (1961) has considered the particular case of the There are generalizations to hybrid processes of the type X(tj)
identification of a quadratic system with Gaussian process input, where X is an ordinary process and Tj a point process. Other
Specifically he considers a system like types of nonlinear systems, eg. those containing an instantaneous

Y(t) = ao + la(u )X(r-u) + XYa 2(u,1)X(t-U)X(t-i') + E(t) nonlinearity or bilinear systems, may be studied by higher-order
spectra. Novel forms of mixing may be introduced for complex
processes. The second-order procedure that Whittle (1953) intro-

with X(.) stationary Gaussian and with (.) a noise series duced for estimating finite-dimensional parameters may be
independent of X. Then the second- and third-order cross-spectra extended to the higher-order case.
are given by

f yy () = A I (X)fxy (X) (7) VIII. DISCUSSION

and
Key ideas that may be recognized on the time-side are:

frx x(X.p) = 2A 2(-X,-V)fxx(X)fxx (p) (8) Kolmogorov's suggestion that cumulant functions be the basic

respectively, where A, and A2 are the Fourier transforms of at entities employed (probably many had considered product

and a. respectively. (Here for exarple for(Xp) is defined via moment functions) and Wiener-Lee-Schetzen's that polynomial

fi ldZr(X).dZx.i),dZx(v)] = l(0X+ +v)f yXX ka)dXd pdv.) In systems may be identified via Gaussian white noise input and
theses Gasser (1972 and Feuerverger (1972) develop frther cross-correlation. Key ideas on the frequency-side are perhaps:thess Gsse (192 nd euevergr (972 devlopfdrher Blanc-Lapierre and Forlet's idea of considering moments of the
aspects of the identification of quadratic systems. In particular dZ(.) variates and the use of higher-order periodograms avoiding
Feuerverger determines some statistical properties of estimates of submanifolds in estimation of cumulant spectra.
A1, 4 developed from (7) and (8).

Lee and Schetzen (1965) set down a way to estimate the
kernels of Wiener's polynomial expansion by cross-correlating ACKNOWLEDGEMENT
Gaussian white noise input with the output. The book by Mar- This research was suported by the National Science Founda-
marelis and Marmarelis (1978) presents details and many exam- tion Grant MCS-8316634.
pies of the use of the Lee-Schetzen method.
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Initially we discuss the problems of correlation
ABSTRACT processing for underwater acoustic transients and the role of

the autocorrelation in the analysis. We give sample transients
Correlations and bicorrelations of a model 20 and their properties. Definitions are set forth for ordinary

lIz finback whale signal and two actual data sinusoidal tran- and higher order correlations, and their spectra are related to
sient signals are examined to investigate the suitability of the spectra of the transients. The importance of moments of
correlation and bicorrelation processors for the detection of ordinate values of the transients is stressed and a histogram of
oscillatory transients. The connections to moments of the ordinate values is analyzed. The principal domains of bispec-
distribution of ordinate values of the signals aiid the signal tra or narrow and medium band transients and low frequency
bispectrum are also discussed. We show that the bicorrelation transients are discussed. Initial performance analyses of corre-
processor is not a particularly good detector compared to the lation and bicorrelation detectors are given.
correlation in the simplest detection scheme for the whale
signal (and likely not for other signals of small third moment) Preliminary results of this v'ork have been
and that the bispectrum of narrowband transients is generally given by J. loup et al. r6 e and by G. loup et al. [5].
small except for transients at very low frequency.

COMPLICATIONS FOR CORRELATION PROCESSING
INTRODUCTION

Whether correlating for a known or unknown
The question addressed in this paper is that of transient, the assumption one would like to make is that the

the usefulness of higher order correlations for detection of transient arrives unchanged, except for a possible uniform
certain underwater acoustic transients. Since the work of attenuation, at the sensor. Aside from the pervasive problem
Ilasselman et al. [4] and Tukey [10]. much has been done on of noise, there are other degradations which can make basic
higher order correlations and their spectra. The excellent correlation processing difficult. The first of these is multipath
review of Nikias and Raghuvee- [81 is a comprehensive guide arrivals due to surface and/or bottom bounces. Even if the
to the literature up to 1987. More recent results are discussed separate multipath arrivals do not overlap, a travel path deter-
by Toda and Usui [91 and Brockett et al. [I]. mination is needed to translate arrival times into source loca-

tions. When the multip.th arrivals do overlap, the transient
If three or more sensors (or sets of sensors) waveform changes and will no longer match the known tran-

receive a signal from a single source, the signal may be sient. Since we expect different multipath interference at each
detected using the cross correlation of the sensors two at a sensor, the signals at two sensors will not match each other,
time or by using a correlation of three at one time. If a either. The second degradation which prevents transients from
known transient is sought, it may be cross correlated with the matching is the loss of coherence due to passage through the
signal at a single sensor (matched filtering) or it may be ocean and/or the ocean bottom.
simultaneously correlated with the signal at two sensors. These
appruaches are the main concern of this paper. The research
can be extended to correlations of four or more signals T-: ROLE OF THE AUIOCORRELATION
simultaneously, to localization in time or space, and to source
ident ificatioln. If no complications are present, the output of a

In this wkork we consider only source detection correlation processor is expected to be proportional to a trans-
and examine mainly the question of correlations three at lated autocorrelation of the transient. Therefore a study of the
tine versus those taken two at a time. We concentrate on autocorrelation and a performance esaluation of the detection
some oscillator% signals which are of a type generated by of the autocorrelation in the presence of noise v. ill establish
,ihratory sources We do not include the complications of limits for correlation processing valid in the absence of other
multipath arrials and coherence loss. degradations.
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WAe dfine the cross correlation for real data FINBACK WHALE TRANSIENT
xlt) and x.(t) a, Our first example transient is that of the fin-

back whale, whose 20 Hz amplitude and frequency modulated
F signal has been described verbally and graphically by Watki-s

ci(r ) = JXt)5( t~r )dt D Xl*(f)X2 (f) (1) et al. [11]. We ha, e fitted the following equation to their
- description

and the autocorrelation as

j p(t) = A(t) cos[21rf(t)t], 0 < t < T - 1 sec. (7)
ar= x(t) xkt~r) dt zD IX(f)I 2  (2)

The amplitude, A(t), should have a linear increase for the first
with corresponding smmation definitions for discrete data. third of the inLerval, be constant for the second third, and
Since the transients are assumed to be of finite duration, the have a linear decrease for the last third, so
domain of integration is limited and not infinite, and we need
not be concerned with truncation effects unless only part of a
long transient is :, be processed. (3/T) t 0 < t < T/3

HIGHER ORDER CORRELATIONS A(t) 1.0 T/3 < t < 2T/3 (8)

For the simultaneous correlation of three or 3 - (3/T)t 2T/3 < t < T
four signals, the bicorrelation ard the tricorrelation are de-
fined. Nikias and Raghuveer [8] and Brockett et al. [1] and The frequency should decrease nonlinearly from 23 to 18 Hz,
earlier authors discuss similar and related functions, with the most rapid decrease occurring initially and a decreas-

For three signals, bi-cross correlation is ing rate of decrease with time. We select an exponential,

r f(t) = 2'a Hz exp(-at)

clJ(, r1) f x 1 (t) x2 (t+r I ) x 3 (t+r2 ) dt (9)
a I in(18 Hz/23 Hz) = 0.25

DXlffi ) X3(f 2 ) Xl A(fl+'f2
)  

(3)
to describe this effect. The result is shown in Fig. I and its

and the bi-autocorrelation is spectrum is given in Fig. 2. The autocorrelation of this signal,

displayed in Fig. 3, is more compact than the original signal
f due to the chirp character of the signal. Figure 4 is a plot of

a(r i .- ) = Jy(t x(t+rl) x(t+r 2 ) dt the bi-autocorrelation which shows considerable structure.

D X(f 1 ) X(f2 ) X*(fi+f 2 ) (4)

If the means of the functions are subtracted out, these become
the bi-cross covariance and the bi-autocovariance. (See, for
example, the summary discussion of covariance and correlation
in Marple [7].)

These relations are generalized in straightfor-
ward fashion for four signals to give the tri-cross correlation

c 1 ,,(r 1 -2,r 3 ) f Xl(t)x 2 (t+rl)x 3 (t+r 2 )x4 (t+r 3 )dt

D 2 (f) X 3 (f 2 ) X4 (f 3 ) Xl*(f+f 2 +f) (5) Fig. I. Model of 20 Hz finback whale transient (an amplitude

and frequency modulated signal) measured by Watkins et al.
and the tri -autocorrelation [11].

.ri rr, - f ' x(t-r 1) x(t~r2 ) x(t"r 3 ) dt ACTUAL DATA SINUSOIDAL TRANSIENTS

We also had aailable two actual (lata sinusoidal
D <I) X( ) X( f3 ) x*( f1±f2+f 3) (6) transients, one identified as short and the other as lung.

Figure 5 shows the shorter of the two and Fig. 6 its Fourier

transform.



Fig. 5. Short actual data sinusoidal transient.
I ig. 2. Fourier spectrum of 20 Hiz finback whale transient.

Fig. 6. Fourier spectrum of short actual data sinusoidal tran-
Fig. 3. Autocorrelation of 20 Ilz finhack whale transient. sient.

tion is its central value. Therefore caution must be used in

.l~i~LJ ~designing a bicorrelation detector. Fortunately, for thf prv-
ously discussed transients, the maximumr magnitude of the bi-
autocorrclation is at the origin for each signal and an ordinary
detection scheme, comparable to the one used for the autocoir-

1 ~relation, was an appropriate first step. It should' be noted that
for the whale transient the maximum in the bi-autocorrelation

- a ,is not necessarily at the origin if the signal is undersampled.
The right half of a cut through the whale bi-autocorrelation,
a(r, .0), adequately sampled, is shown in Fig. 7.

.. 4, t 1"fIt is worthwhile to examine the peak valuez of

ilit1it1 the autocorrelat ions and hi-autocorrelat ions for the thiree tran -

~~~ f . j~j~ ients mntioned. See Table I, We note that thepekvle
I ~ii ~of the bi -autocorrc!lattions are small. This suggests that the

,imple hicorrelation processor may not he a good detector for
these and similar signals. A performance analy sis is needed

I ig -4. li -au ii correlat ion of 20 li I i nhack w~hale transient. for a definitive determination, howsever, and those results are
given in a later section.

T-he central ordiniate is related to thle moment (it'
Nl ks. ()RDlNl\\ V[ \'\ll the di~tiriution of' oidinate ,a1LReS and to the 'atea" under thle

I~~~~ ~~~~~~ ~ ~ ~ ~ fccrvtindtcoisoehih loienerg,,- I pectruni or thle -%idumre" under thle hispectruro

In fte le[ f4 (the corr-Cati'in. Since the larges! o *i, lS.rltosip r ici~e nsiheun

,f t~r:t~e ile :iiurc orrrlrton is' t,, central value, this is a

r,- I "I-0 in, II I'1 choice, I hie ,ise Is true oif the tri- It should tie ohsersed that more spitcie

o~r:rr''ih~n I thr hi-.err.diti', ho',weser. there is no deitection ;Jienies can be proposed, includling those based (in

Ij i ,11 ik. ih , TIxImif ui r, ,t; kjoiti of the hi .iuit,ci,rrelaj the iiiai :uhsrice (it a Ihici(retutmn.



For some applications it may be useful to normalize, such as
by dividing by

: x(t) dt.

For discrete signals, the summations

Z xt2 At (14)
t- .=

and

Z At (15)
tC-o

Fig. 7. Right half of a cut through the whale bi- are used. The transforms of x2 (t) and x 3 (t) help determine
autocorrelation surface, a(r I ,0). adequate sampling for these calculations.

Table I The small size of the central value of the bi-autocorrelation

and the third moment for the oscillatory transients studiedCentral Ordinate arises from their symmetry about zero or their mean ordinate.
A histogram analysis of the whale signal, Fig. 8, illustrates the

transient autocorrelatio- bi-autocorrelaiion property. Even though the histogram is clearly non-Gaussian,
(amplitude units)'sec (amplitude units) sec as can be seen by its deviation from the best fit Gaussian

shown in Fig. 8, it is almost symmetric. The figure suggests
whale 0.278 1.07 x 10- 3  that the fourth moment will differ from the Gaussian and that
short sinusoid 1.46 x 10- 3  2.46 x 10-5  the tricorrelation detector should be investigated.

long sinusoid 3.48 x 10-2 8.83 x 10-5  PRINCIPAL DOMAINS OF BISPECTRA

A small central value of the bicorrelation corre-
MOMENTS AND AUTOCORRELATIONS sponds to a small "volume" under the bispectrum surface. The

small "volume" could be due to the oscillatory nature of the
The central values of the autocorrelations are bispectrum (which implies that some other value(s) of the

related to the moments of the distribution of the ordinate bicorrelation should be large) or it could mean simply that the
%alues of the transient about the abscissa. (Elgar [3] discusses bispectrum is small. For narrow band transients, especially
the third moment of x(t) about the ordinate.) For the autocor- those which do not include the lowest frequencies, we con-
relation the second moment is used, clude that the latter is generally the case.

t (Although narrow and medium band transients
x2 () dr_ (10) are generally small, not zero, outside their passbands, for

graphical clarity we assume they are zero. We label fB the
and for the bi-autocorrelation the third moment, bottom frequency of the passband and fT the top frequency.

By shading the nonzero dopnain of X(fl)X(f 2 ) differently from
the nonzero domain of X (fl+f2 ), the nonzero domaV of the[ ( bispectrum of the bi-autocorrelation, X(f1 )X(f1)X (f 1 7f0)

S ..) dt 1 which is the overlap of the two, is readily apparent. The
whale signal is a narrow band transient and the "nonzero"

f,,r the autocosariance and bi-autocosariance the moments domain of its bispectrum is spown in Fig. 9. The principal
rlatixt, t,) the mean are needed, domains of X(ft)X(f 2 ) and X (fl+f 2 ) do not overlap and the

bispectrum is small (but not zero because the whale transform
is not zero outside its principal band). The nonzero domain

(12) for a transient with a wider passband (say 20 Iz to 60 tlz or
50 lIz to 150 tz, which might be labeled medium band. is
illustrated in Fig. 10. Onl3, a small part of the nonzero do-
mains of, X t'l1 X(t'- and N fl+f?,) o erlap, and the bispec-
tr"Lun i dume" is limited. If the transient paTband includes
the Isjskest frequencies, the oerlap is imprised, as can he
Itlu,:ed from Vig 1!. Onls tihlo h er p-,wihle trequencies of

• ' : .t the .i;psectruni (thoe cImse't to the rigin at, nutzero.

h,,v; er, wipnl m is rctl;J\el% sin t,,.)h hi..autoc rrelation Issk
r,.oluti in)
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I . . . . I - - -
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Fig. 11. Nonzero domains of bispectrum factors and bispec-
trum, low frequency transient.

Fig. 8. Histogram anatysis of the ordinate values of the whale / nonzero domain for Xfl)X(f2 )
signal and the best fit Gaussian. '\, nonzero domain for X (fl+f 2 )

crosshatch. nonzero domain for bispectrum,
I. X(f1 )X(f2 )X (fl+f-)

- - - - - ----- , PERFORMANCE ANALYSIS

V- - - - I'/,(, - - Performance analyses are being conducted for
- --...... .. correlation processors as detectors, using the method of receiv-

,i [ I er operating characteristics (ROC) curves. (See, for example,

-. . - - - - Egan [2].) We have thus far completed initial tests for the

I ' cross correlation and bi-cross correlation detection of a known

transient, the whale signal. We have used the cross correlation

I - - - of the whale signal with a noisy whale signal and with noise

I ,i alone to generate curves of probability of detection versus

I 'probability of false alarm for the cross correlation, and the bi-
----------------- --- - . cross correlation of the whale signal with two independently

I1' EI' noisy whale signals and with two independent noise sets to
gi,,e the hi-cross correlation ROC curves.

Fig. 9. Nonzero domains of bispectrum factors and bispec-

trum, narrow band transient. We use Gaussian distributed time domain noise since this

nonzero domain for Xtf)Xlf2 )  should be the most favorable type of noise for the

nonzero domain for X (ft+f,) bicorrelation detector. A histogram analysis of one 2048

crosshatch, nonzero domain for bispectrum, sample noise set is given in Fig. 12. The deviations from the

Xlf I )X(f2 )X (fl+f2) best fit Gaussian are small.

i Z I - - - - -

7'7

- - -- -' . " -

I, [. , ./'// I'

I . . I .

i ii

Fig. 12. Histogram analysis of a sample of 2048 point Gaus-

fig, 10. Nonzero domains of hispectrum factors and bispec- sian distributed noise and the best fit Gaussian.

trurm, medium band trinsient.
nonzero domain for Xf )X(tf)

nonzer, domain for X ff, We define the signal-to-noise ratio (SNR) as the
,rc'ha itch, noot o r jonain for bspectrur , ratio of the standard dt_'iation of the signal to the standard

rf I)Nf, )X  (fI+f',) deviation of' the noise. \ke has e not con erted to dB. The

performance of' the cross correlation detector is still %ery good
at a SNR f 0.1, as shown in Fig. 13, The bi -cross correlation
detector does not perform nearl, as \&ell for a 5 0 SNR (Fig
14), and it fails at a 1.0 SNR (ig 15)



Our v4 Irk is currently being extended to the
case of the unknown tr, nsient (all signals noisy) and to tricor-
relations and to other sigoals.

SUMMARY

Third moments and central ordinate values of
the bi-autocorrelations of the oscillatory transients examined
are small. For these transients she central ordinate happens to
be the largest magnitude in the bi-autocorrelation. A per-
formance analysis shows that the bi-cross correlation is not as
good a detector for the whale signal as the ordinary cross
correlation when each is used to detect on the peak value of
the output (the simplest detector). The performance anaysis is
being applied to other cases and other detectors.

For narrow-band transients, the principal
domains of the factors of the bispectra often do not overlap.

Fig 13. Probability of detection versus probability of false In these cases, the bispectra are small. The domain of overlap
alarm for a simple cross correlation detector for a known can be limited, even for medium bandwidth transients.
whale transient. Received signal has a SNR of 0.1.
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FOURTH-ORDER SPECTRA OF SONAR SIGNALS
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ABSTR ACT paper, a sp~ecial case of the fourth-order cuilaiit will

Ini active Sonar, when a long pulse is t ranismittedl he contsideredl. It reduces to a fuotctioii of one time

le ret urn echio is usuall y amlitud~e mtodulated from idelay. But, nevertheless, this special case has interesting

target (lyliamics, l)oppler spreadling, or iiiediuni effects. propert jes thlot <,anl he exploited inl Sonar aud radar

Vider these !-oniiitoiis. the spectrum canl he severly applications. Being a function of oiilv one timie delav

disto)rted mnaking detection anid classification inilpossi- it is also easily inipleniented.

tie siga iillt~l oultdcde us triSince, the envelope of thle sonar ret urn is not iii geli-

it is Shown inl the paper that tile fourth-order spect r t eral a Stat ioniary process thle second-order and~ fourth-

caii ext ract range and I)oppler informiat ion while for thle order spectra are obt ainied by a t wo-dimenisional Fourier

samie conitionls the Spectrum cannot. transform of the autocorrelation and fourth-order cii-

niti1 ant, fuincrtions. For thle at up lit udle 1mod ulated ret orni
I. INTRODUCTION it will be shown inl the paper t hat thle second-order

[Ilie fourtlh-order spect ruin1 relireselt.S a new Way spectrum is interfered with hy the modulat ing function

of ext ractinig iniformiationi froni Sonar data, U~sed iii anid, therefore. range aiid Doppler inforniation caninot

colijo ct iiii with tilie second-order Spect rumn (or power he extracted. Whereas, thle fourt li-order Spectriimi caii

pec t r in) tilie foutr th i-ordIer s pect ruml reveals ot hier wise ext ract. range an d Dop pler in form at ion uinider t lie s amie

htiddeni relatioinships t hat are imlportalit for (detection Coiidit ionis.

a id classificationi of sonar sigliaWj 1. fii addit ion. t(lie 2. Modulated Processes

httirtti-trtier spectrtiii call ext ract ralige aiid DopplerMouae prcssaieilcmunatnss
inftormiationi froim al' active sonar ret urni uliler cni-Nmtltdp-cse rs l oiiiijaiisa

Itis whidh renider thle coinvenitionial spectrumi severelly well as Sonar andi radar applications. liere tile followinig

ilegiatiet. Moreover. lie Iotirtli-order 4pertrn n ull general tmodutlated probleim is treated. [,et.

ratis out -tdditive (,iitissiail noise fromi its finial result.

-i'lie plipf- will folcent rate loll tilie cooledl ptillse e'X-

rnttjtit. list. ft(e enivelopte ,I ;iit amtplitutde ititilated he tilie uModuiiatedl piloeSS. Whlere alt ) anld 711 t art'

-11)jJ,0 111 w lllie ._tja tv . ' I, 1 ile il m il ~k ti ~ I~ ll Ze o 'p ll il 111ti1alt pr'i~c



is a product oftw, autocorrelation functions. Therefore, has the following spectrum,

it's spectrum lwill be a convolution of the two spectra. 0

If z(t) is the information bearing component then the ( 42(W) e 2 (2a (2

ndulating component a(t) tends to interfere with the

recept ion of z( t ).2rrVar
2 [a(t)] 6(w - 2w 0 ) + 6(,o + 2w 0 )

8 2 (2.6)
Let a( t) h~e a C aussian process. Then thle fourt h-rL~et ciat e of eaustian (res.Ten to e fourtNow, the sinusoidal frequency 2w), is seen in (2.6) evenorder cumulant of equiation (2.1 ) rediices to

as a - o .

('4.,(r) = Var
2 [a)t)] [E[z(t)2z(t )2

1 - Var2.z(t)11 (Simulation: Anplitude Modulated Sinu-
soid)

+ 2Ra(r)~2 rE[zlt)2 z(t ±rT)2] 
- R (r) 2 ] . (2.3)

The spect ruin (in db) of a sinusoid amplitude mod-

Notice that (2.3) is not a simple product of aiuiocorrela- ulated by white noise is shown in figure 1. The sinu-

tion functions. Therefore, it's spectrum will be different soidal frequency is not discernable in this figure because

from the spectrum of (2.2). of the interference of the modulation as predicted in

Now let z(t) be Gaussian also. Then (2.3) reduces (2.5). However, the fourti-order spectrum in figure 2

to, (plotted on a linear scale) reveals tile underlying sinu-

soid but at twice its frequency. This result is predicted

(42(r) 2Var 2 a(t)IR, (r) 2 + 2Var 2 [z(t)[R,(r) 2  in (2.6).

+2R(,( 2Rz(,)2, (2.4)

which can be seen to separate the two spectra into a

stum and a product rather than just a product.

EXAMPLE 1. --

Let.

x(l) - a(t)cos(Wot + (6), 000

where, Q is a randoin parameter uniformly distributed

between 0 and 21r. Then,

cos)-R,( ) w5 i)o.

2 0_

FREOUENCY (Hi,

If.
f,,(T + .... FIGURE 1. Modulated Spectrum.

Itenl thle Slp(i ruin11 of R;( r -S

(2.5)..

- , 2 0 o2- (w -- )2 4- 0
2

If ,,. x hn . , - 0. This means that the sino-

oidal frq W W , will tl ie oblserved in lhe spectruIn..
',I 1¢+ - I . Ai j 4o +;r, I ,

l,,'v'r 1. 1c1il I, order ,Iuimilant , F IURE 2. Modulated Iourth-order Spectrum.

T i' I .
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3. Sonar/Radar Application ,T k

a~ -2 VZ~ np-T
Let., -k

(3.7)
k

t) h ( t nT,)el '", tc '  'Fie objective of this example is to compare the

= k autocorrelation function of (4.7) and its corresponding
spectrum with the fourth-order cumulant function of

,x< I < - , be the pulse coded transmitted signal of (3.7) and its corresponding spectrum.
length, 2kTp +- T. The pulses are defined as follows. The autocorrelation function is given by the follow-

T T ing expression,htt ,7T ] -- ,,(t -. ,% +- .- ) - ,,(t ,,T -2).k

2'k

where u( ) is the unit step function. The parameters, T E[r(ttl)1 2 ) = R(t - ti) Z Z
and Tp, for T < ., represent the pulse width and pulse n,' =-k 2 --

repetition interval, respectively. 11(j - nyTP - TR)h( , - n2Tp TR)ei
! 

.. . ,2

The received signal is assumed to be of the forii (3.8)
vhere,

a1(t 
T 

TR 
TRit 

,T7'.

' is a stationary autocorrelation function.

where. TR is t lie range of the target, Wd is the Doppler Therefore, since (3.7) i. not in general a station-

radian frequency associated with each transmitted ra- ary process, the spectrum of (3.8) is defined as a two-

dian frequency ,, 0, is the phase of the nth trans- dimensional Fourier transform of the autocorrelation

mitted pulse, and ( is a random phase angle uniformly function.

distributed Letween 0 and 27r. The real stochastic Caus-

sian modulating function a( t ) represents a time fluct uat- S(Tn, w,,) -E-x(l )r*(t,)

ing target [7]. This nodel usually applies for transmitted

signals of long length. c -J() , g' - 2r)dfdt 2. (39)

Let, To simplify the evaluation of (3.9) the modulating func-

tion will be assumed to be white noise,ie , R,,(t, - ti)
10 nT, - I I) - ,, ('.'I - T, '4-, P2 11 ). Therefore, the spectrum of (4.8) reduces to

, ~~~~~S( Tj, ', w2 ) = S 
-

.
' . T

he the adjusted transmitted signal. Where T is a

"a"ie"m t er iii at is ;d li ne' ii order to search for t lie trie wsi ( ,4  (', ] sin[(w'l 4- 2 )(k 4 )Tpl 1
range. For siunplicity. it will be assumed Ihat 7" Tr L -'i 1 - Si i[(W, (3.1

T
0

ie, tile raiige is known.s (-/

[he envelope of the received isignal is defined as The spectrum (3.10) is concentrated along tie line.
follhows, u.' - -. ,2 wit hi t he same value , T(2k = I. for all fre-

.r) t ) - , .r') t)( /i't). quencies. Therefore, if ., s -- '2. then., , I . I -=

T(2k t I ), 'v . This clearly shows the interfering effect
where the asterisk is thlie coiiilex coiiate, of thei modulating white noise.

JL hierefore, -jive the pulses are disjoiiit. . The fourth-, rder cimuilant function reduces to the

i t 1,)t h( t ?I, , 1 , following result ,

hit u llTP 7 0.,igi Y. .

th," enivop,, ,,f 1t1, r,.Cived Sigcnal is.
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APPLICATION OF BISPECTRAL TECHNIqUES TO

RADAR SIGNATURE ANALYSIS

Eric K. Walton aiid Ismnail Jouriy

Trhe Ohio State U7niversity' Elect roScience Laboratory

1320 Kinnjear Road, Columibus, Ohio -13212

ABSTRACT II. BIRANGE PROFILE THEORY

Spjectral est imat ion t echniquies may be used iii radar sig- The radar scattering fromt a coniplex target c:an bie effec-
nat ure analysis to obtain a radar target imipulse response. t ively modeled as a sequence of dliscrete sc-aitc-rers. With
Ini general there is at one to one relationship b~etween spe- this model each element of the set of comiplex radar scat-
cifhc scattering mechianisnms and the timie such iseclia- erng (lat a is expressed as
uisuis appear iii the impulse response. One- of the dif-
ficulties that this type of analysis has is that complex S5,(fj) .4,exp( -j 27r R~fj/c), I
targets often have multiple interactions. The result is
hat miany of thle ternis in the inipulse response are re- where

lat ed to thle interactions rather than duie to the result of
simiplle subcomponent scattering. MIany of these motlt i S(f )=p, scattering coeffi.cient at

ple interaction mechanisms can be identified as such by j"' frequency
lie application of the bispect ruin to the radar scattering .4k s amplitude of p' scattering

data. Also, this study indicates that the individual tar- coefficieiit
get scattering uMechanismss are more easily observed usiiig R, line of sight range between
lie hi s t ruin und (er co n dit i ons of high nioi se or target

dispersive effects. scatterers andl radlar zero phase
(k timue) refereiice p)lane.

1.~~~~- IN RO UC IN ' radar carrier frequency

c speed of light.

Radar scattering from an object is often measured as ailii- This caii be usefully coiivert ed to scalar foriii bly simiplyN
p1 itumde and] phiase at a set of evenly spaced frequieiicies. t akinig thbe real p~art of the scat terinig value.
This pern its a t raiisforimation to thle timie dhomai n and
h iis t hie range domiaini by takinmgaii iniverse Fourier traiis- -4, ,) 1cs(27 iR,2

forml of thle dlata 1 'Fie ,,still is called the radar target
iiipiilse response., lii general there is a one ton) le rela- Note t hat when data are re'presenited in this form fir
tioiistiip between soeCific scattering nieciauiisins aiid the lie scat teriiig fromt a particular single point scatterer at
iiie suchi mechanismns appear in the impulse response. at part icuilar raiige from thle radar phase zero refeitelice

tOnen of the difficuilties that this type of anal 'ysis has is that point ( which miay be locat ed near or on thle target i. it si-
t iuplex targets ofteii have miiultiple interactions. T[le re- nusoidal variatioii iii thle dat a as a funciion oif frvqii'ricv

silt is that manyv of thle teriis in t lie imipuilse response are- results. The amiplituide of thle sliiisoid is pirolportionmal Io
relIated lo, thn' iiteractioris rathepr thianildue to the result the scattering coefficieiit of the scatterer, and tlite peni-
of siiiiple sliconiipotleiit scatterinig. Mliy of these 11i1ii idicity of the " sinusoidal variation (-s at functioii(of radar

Ip i)I I t" r~o Won IIIV haliiri S n heI i detit l IeII fi ed I it sti I KIIb carrier frequency) if thle real part of't lite tlite scattered
1'. ati,atioii oftI lie bispetritn 1(1 the radfar scatterng 'igulal is jiroportioliia to, tilie line of sighit distance oft Ihe

a \ thi tldv udica, , hat h'. ndivdlia taret scatterer to0 tile 7eTo p~has- -efe'icVc pdlne. It tliet s ,at

Ms.thi ~tilvindcat-, i~tthejihvidialtaret torers do4 not interact. thieii liet total tI.c' iv Si~ial will
;Otruigi iiehiaii1,iiis ;Ii Ii ope e.id ,s't vril isiiilg 11w have thle fori

u - i l- I 'i li . '%1 1 1 c I I w II h I d g li' n o is e fp 2ti r I
-11i10111" oishh il li -di'wio tht li ls.l he-<pcIia 1. ~i2ti:fi



Note thfat comuput at ion of thle spectriumi of , will y ield F-igure 3 shows the lbispect rat response of the lbackscat-
values of .4,. for eachI R5 . Note iil thle ofther hand that ter fronti thle lade-sphere combination. InI this figuire,

iftle scat terers ititeract itiple inlt eractioni), thein a ro -r 0 (zero reference at the leading edge of the blade).
signa, scat teredl from thle latter part of a p~articular tar- Note thle response at rl = 1.6 meters and r 2 = 2.4 me-
let will lbe infiluenced ( or mtodulat ed) )b interact ion withI t crs which is (fue to interaction between the trailing edge
comtponent s of tile target closer to the radar. This in- of thle blade and1 the sphere and is represented by the

- at iii witro t a e p art la of jt ie th raar target rlt t t erm exp ( - j27r( ri + r2  - ro)-fl). W e caii also not ice thle
scaterig fom paticlarobjct tt he ada taget twelve symmetry regions of thle bispectruin.

results in niodulatioit-like effects iii thle range dlomiaini pr- If the value of T0 is increased to 1 meter, the bispec-
file which c'an be uniiquel y identified when the bispect ral te-al response shown in Figure 4 results. Note that all
estimiat ion process is applied to. 'S'. (if the response termis have moved along the associatedl

1 hle del-initiott of t lie bispect ruin is thle t wo-dimnisionial (diagonials, butf lie particular scattering aiid initeractioni
Ftert ransforin of the third mont11ent Se(ftieitce. III this teritis are still observable.

sit% td le his pectIru m is a hi range p rotfile ohbtai ned by
citiputitig a t wo-dimtensiotial Fourier transform of the
tiird order aiitocorrelaition function which is a function
,, frequenicies fl. fi, in the two-dimtensiotial frequientcy doi- IV. NOISE AND DISPERSION
IO i i.

If zero ineati white Gaussian noise is added to tile raw
Ifu. zF {SIt f" ) s' ( f, fl -S,) (f, If) (4) dat a, thle resulting impulse respotise and bispect ralre

spouse are shown Ii Figures 5 atid 6. Note t hat althbough
tle detectability of thle target scat tering termis is great lv

Th F.R< x-~ >FL,(N- .f redutcedh in the impulse response, they can still be identti-
ft h fied in the bispectral response.

exp j27- cl[UJI - ! ) (5) Te effect of dispersion in the data is shown in Figures
7and 8. Dispersion is thle result of scat tering fromt at

lii Ilislect ral estimties in this study are comiput ed sitbcomponent of the radar target where thle scatterer
tug tthle in direct classical imethIoid which is based on cont- behavior varies as a functint of frequetncy. In) t his case,

put hg alt estimiate of the thtird muomtetit sequetnce. WXin- tile behavior is modeled as follows.
1(witigf Cali also he applied to the estitmates of the aul-

1 rrlatioti valuies. III this st id ' thle cptitliutiil Window A) 3  .,(1 + crexp (-kf,j))co-s(3f, J (7?
1 minuitiut lisluect run bias supretii) '2 is used.

where

I11. BL .XDE AND SPHERE EXAMPLE AI(f,) is the frequeticy depetident ainplitudleoftie back-
scatter coefficient fromt the i1" scatterer anid ojk.

Ctiiler a hlade of wvidth r, ruu atud a sphere at a dlis- andi 3 are constants.
t miice I, ,from thle t railinig edge of thle blade. Th'le zero Ili this study. o - 0.6, k 0.01. atud 3 207r.

re ert i, pet at a (list atce rut fromt thle leading edge of
tiK lade (-se F'igiire I ). It c-anl he Shown thtat if OI f'igures 7 atnd 8 show that the effect cif dispersioni is

*lt'i'l'r-. foir raY path..: thle backseat teieu signtal is itot critical toi thle hislectntiii responise.

',, f 7r, r 1 xp /I

V. BISPECTRUM OF EXPERIMENTAL
1 exi, 27 r~t- RADAR DATA

T" 1'0p r) r Te oitpact 7adar cross sect ion m asure mient ranlge at

j~~w( t') I te Ohio State Universitv Elect roScieuce lahoraturvwa

used to mtake meiasutremntts of the radar scattering of a
1101 te itihttids I. 2 -f-lI. altI -14 are fre- set of 5 -scale miodels of coinmiercial tranispoirt aircraft

M11I 1uIldiobtit. '1lie imujilseo rfrsImlise. lle hla!' I he tieastiritetits were calibtrated si, that absolute val-
jIl it. ug' a, -uliiiltiel u1;Ilg ttilveleFt-r ties of ampiflitudre (iii sufiiar- cenutimieters) anid phlase (it

m ailt1 I ai 11iluttulil uvvv uVldW"" t 1T1fruuioy b4 1 1 l degrees fii ant absolute referenice platte) were auvailab
fiii 1 1 h 2 0I (;Illi 0- 4liwti Iilitil 2. Nte ov.r the( bainI of ftiqueticies hiowt 15 to 12.01 (;11,. 'his,

'k'. 'bit i'o-Iiip f( t I b fltlii. ls~jm'l'es -rPsjid i ptemitis ill tile lll IP (1id for flill scale
-, I t)-.. ti-- 4iii- i- u~. 1,. ittl~t''suts. uircraft anid mieai. tht the targets are ill tile 'esoni

I7 tt-r;ctI 'eruttntt -1t' tall-' rrgioti '1 the radhi- (i.., 'Etc waveletigith is 'it the( order
-ii .1~ i. iutl. Iit.f the( tat-geVt Si7et



Using the techniques described above (including the ZERO REFERENCE

us, of the optimum window function), the bispect ruin

of each radar target signature was computed. The re- -_

,ts are shown in Figures 9 to 12. Note that the dif- r2 --- _ -

ferent radar targets yield distinctly different bispectral
responses. This implies that such responses are likely
candidates for radar target identification. 100% I

Since each radar target is being measured in the reso- -__9 I

nance region (as mentioned above), it cait be shown that §1 10% 45%

the target signature is relatively insensitive to changes 45%'
in aspect angle, (especially in the impulse response sig- 23% 2 45;-"
nature). The result of taking the bispectral response for I
the Boeing 707 as the aspect angle varies from 10 to 20 S2
degrees is shown in Figures 13 and 1P. It can be se- n that - 1%
the bispectral response is rather stable between each t0 S3

degrec angle change.

VI. CONCLUSIONS S4

In this paper the application of bispectrum estimation A =i0
to radar signature analysis is investigated. It has been A1 A 23
denonst rated that a bispectral response of radar backscat- 2

= 
A2e-jk2l A 3=45

ter signals has tle advantage of ide-ntifying multiple inter- 3= A3e-jk2r2  A 4=11
actions for complex radar targets. This leads to tie con-
clusion that higher order interactions of radar backscat- 4= A4 jk2r+r1 -r)J
ter itay be identified using higher order spectral analysis. =

Therefore, the bispectrumi and other high order spectral sT= s+s 2+s3+s4

analysis methods may be considered as potential radar Figure 1: Internal bounce diagram for blade-sphere in-
feature extraction techniques that may be effectively used teraction.
jointly with the impulse response in radar target identi-
fication. Finally. it is shown that Iispectral responses
of radar backscatter signals are relatively robust under
conditions of high noise and frequency dispersion. -8 -6 4 -2 0. 2. 4 6
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IHl(;HIR-ORDER sTAxTISTICAl. SIGNAL PROCESSIN(; WITH VOLTERRA FILTERS

B. Pic inbuno

Laboratoire des Signaux et Sysrrnies
1LSE, Plateau du Moulon. 91192 Gif sur Yvette. France

A bstract. I his paper presents a resiew of sonie aPplica- tools we intend to review the basic problem of statistical signal
tions of N olterra filters I N s) in statistical signal process-
ing. N Fs are a particular class of nionlinear filters defined by processing such as detection, estimation, array processing etc.
an extension of the idea of impulse response to the nonlinear The corc of our analysis is that VFs can be written as h'near
case. Linear and linear-quadratic fitters are special examples filtcrs in a proper linear space. In this space convenient scalar
of' NIFs limited to the first or second order respectively. The prdcsanbitouednschawyhtmstftepo-
purpose of this paper is to extend to V'Fs the main idea s used proums ay can be treatced by met hod deduce f the linear

in applizatiors of linear fitters for signal processing prob- -

lenis. To do this the first task is to simplify the notati..n of case. In this analysis the use of gecmetrical instead of analytical
the input-output relationship oif VFs Ashich appears Nen' te- methods greatly simplifies the results, even tl -ough if the final
dious. Noting that this relati-nn is nonlinear in terms of the calculation needs the use of analytical or numei ~ai procedures.
input but linear in terms oif the parameters defining the ViF, This kind of approach has not been widely explored in the liter-
it ik possible to deduce that the output can he written as a

scalar product quite similar to that used in the linear case, attire. But those interested in a gnrldsription of'VFs using
1sing this form of scalar product. "shich is very easy to ma- analytical methods can find a g, ood introduction with many re-

nipulate. and also the higher order statistics of the signals, sults in I1.
sie studs some fundamental problems such as detection, esti-
mation, array processing. etc. In doing this %4e avoid .2--vtic2.FNA ETL OF OTE AFIER
calculations xi hich are ser 'vcomplex suith N ls and focus our _FNAINASO OTRAITR

attention on geometrical methods.
A VF of order v it positive integer) is a nonlinear system the

input-output relationship of %Ah:A is described by a finite
I lNi'RODL'CTION Volterra expansion. To simplify the pr-sentation we will con-

.sider the discrete time case only, and we call xlkl and Ylk) the

'Ilie purpose of this paper i, to present at review of some ap- input and output respectively. The output is expres't

i n.ot' 'solter ra filters (V~st in statistical signal processing.

k 1 'Aell kniss n that the uike of linear tillers as well as the as- xI 0 + ~ h~ 7 7 4~ k-11.l
sUmior of (itsannoise are somectimies quite inappropriate f, ,n

and '. e only aprmmie, sitions in many signal processing
-Ih~s fihese ajppnnxiinati.,is can be very good in sonic cir- X1k -iJ2.

etim-.ziiees h[Ihte I"in.ftICIeut Inl others, and the riced for

'is'.~ ~~~~ 'm i ncerfraln ie [edfiut sta In this expression /, and zi, are arhitrars' integers and the ss'mlol
the:orept'I hnar v-.eniisquie s.el deine, tis W,7) means that the sumi is taken on all the irs. The term 11,j

i I. ni c r uIlIneaI IIr ' teC ilr 1 1 he samn ic an heen sta Id fiinr corre sponding to in ~I is a constaniit indelpendent of the input
it p ;~fl I non C asduprove'.'-. Iiot %%e.ll Ic- and! is somectimc, omnitted. In til, latter case, and if' = I, w.e

1I 'A 11h( ,t other i-.-iimpljtiou. It is, In gener~l A Iupos.ihle to 0htaX, th 1C Clas ,S icalI0rlon0vo lt ion ch'a rac teriz mng linar fiIter-.,. B N

t~tittil sinal poiesiru \ Si 01.an ob\vious extension (I i the tennoos -ed in the linearcae
In ti'i paersc Interid to suya ci'-.- 0t nonlineair .tei ve il aththe\Fti afntimusrspseftert-

'i\A Ci 'A ill'V nhedt th %i I- expasion and rxclt hieho areon itr' are toa iter a.
hsj~d i %\olterrt jm inad Aihar r, 1'ar taken ft. inite wtr il. a for exaimple I 0 I'<
hr~~~~~~ V'C (In1k The Ie huN th random)1) 10i11- Iip WeL make t n- asirrp!r lrroI in o rder to avoi] conver

ir ih ii Io.ill he leveie fihe:ir momnt-.i till iene e prohlcnms. In thi -. ~ i~elie Input t tunic k cani lie con-.id
JiTtt.01,1 Ii ,M' C\" I% e I th le 1tI, te Th4 cf red 31 , .1 vCtor X xci i ki'n n . i i V c - e

tin .eerrir ',erttvti ,~t.~l'-.t- With e-



for simplification xi ii and the Output at time k can be expresscd As in arty linear vector space, we can introduce linear opera-
as tors Such as

and all the concepts associated with these operators are valid in

t"eC the c satik, I < '2 N . %lore imporan: is the cnncept of a scalar product of vectors of
For thle discussion Altlch followxs it is necessary' to simplify IR'Jj For this purpose it is interesting to simplify the notation

the notation of (2.2). For this we observe in 12.2) that the output even mnore and to write
,o" the VF. considered as at function of the parameters h,,

detininu this filter, is linear in termns of these parameters. By in- h ,i~... il 28
irokccmg an appropriaite space Ae intend to use this property to (28

ss -itc N v ith a calar product. or
wihere i. stands for a vector of R' with integer components

/ I, + <i. 0[X. I> 12. 3) Ii7 i' i' l.4". With this notation the scalar product of two
ve-ctors ht, v> and Ili', I,> is defined by

s; Ucre h. v > and 1X, v> are vectors of this space. and vt is a re-
mindcr of the order of the VF.

T1o explain this method, ltus be-in with vt = . In this case it <hm1"I, 29

ica that if 0.= ) (2.21) ccomnes

which is a direct extension to R- vJI of that used in IR . This
_V x (2.4) allows the introduction of the transpose of an operator A defined

and the iectors '/t. 1> and !X, I> are simply the vectors h, and x b

Consider now the case wvhere 1, 2. Then (2.2) becurmes <,vAIi >=<,vIA .i> 21)

h0 It,, X x 1 H-x .(2.5) Finally, an oporator A is said to be symmetric if A =A T and
definite non-negative if for atty I/i. v> s\ e have

wAhere hj and 11 are a vec.toi and at man ix respectively. Tite
coiflpitnents of hit are /Ii.. I and the matrix elements of I/ are</.IAIi v 0.(21
ktjr., i.11. AS the nt, .,rix H can be considered as a vector of the

sp % Iv ~ api /,MIcnb osdrda Let us now define the input vector !X, I-> appearing in (2.3)
vectr ~v . to obtain v by (2.2). The input signal in (2.2) is a real N dimen-

of the space IR + R2" called Rv "21. This vector I/i. 2> is

v;kritteti as 1:, If.> or also as 11t,, 112>. sional vector x w ith components xlii. To this vector of IR we

Siirilarlv for "3se can introduce the VeCtOT associate the vector IX. v> of ~iVvj defined by

s% hcrc h I, at icktor, clemeint of IR". amatrix, elerniit of' \,hre x, is at vector of IR "" with components xji i'Ux[i'7 .

R-1 intl Ii a marntrix*. clemennt of R N-ith matrix elements ti 'j. The vector IX, vt> is the v order input vector associated

It I. /, k . !Itr this reason Ae say that ih, 3> belongs to R 13. wA.ith the input x. With this notation Eq. (2.?) can be "s ritten in

Ntehe fohm (2en.t -3) whc greatlysimplifiles the notation. O.)f coulrse.
ih [Inint. h, ecomes obviohs. tefr .)wdh"el

I (i !!_fI larryr 'aJLIe of Vt wAt- 2n inlroduce a vector l/t, the exaIct calculation ofYi requires the returnt to Eq. (2.2). It is
A rttei A A~.. h. > ~sher It,, a.~thestrett. eap also clIear that if' it - I ot t. = 2 we acaiti find the linear and lin-

c -: 1_- I ittad t'. the omtiponctit of at vector of R"I. The ear-quadI(ratic filters. Finally, in order to siniplify a little more.
'r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~,% 'A I blte.ta(terpaecleR JThs ewill omit the letter %, when to0 abg ityi possible in the itr

It Ut it tr A/. ~ 1' tttatte byreplcin al th As der (of' the filtet . Thus InI the foP' win- h/> means ht i>. ishen-

T! ; t I P VIf1 1 . Itt' I .11 ultiplied its 4. OTit ever the ord~er vof the filter is wkell q)-'cified.

I It .1 I ~ 5tt' 1~.-~ ~r.: e / ron/',n When this '. the ca'.e. the sector A > al'o become'. ran
% d' J ~ iotti. as, does the outputA \ e'iet h\ (2.1 t "IhIe italottte's II



the input introduces two points which must be briefly discussed. D = V0(Y) (3.3)

First, and most important, the output Y can be undefined, in the
sense that it is not a second order random variable. In order to where E0 and E1 mean expectation value under H0 and t re-
avoid this situation \Ne must assume that the input vector x has spectively and V0 means the variance under H0 .
finite moments up to order 2v. This ensures that v has a finite The deflection criterion has long been used in detection theory
second order moment, or is a second order random variable, and a more recent discussion of its history and its properties can
Secondly. v does not in general have a zero mean value. To de- be found in [21 and [51. In particular, it is shown that the filter
tine this value let us introduce giving the maximum of the deflection is precisely the LR. Fur-

thermore, using results of 15] it can be shown that the best ap-
A> X>], (2.13) proximation of the LR by a VF is precisely the VF giving the

maximum value of the deflection. This indicates the interest of
such a filter, which will now be determined from (3.1), (3.2)vshich is a vector of ~IR"vj obtained by taking the expectation ad(.)

alue (and (3.3).value of all the terms of (2.12). We then deduce from (2.3) that In order to calculate the numerator N of (3.1) we introduce

E(y) = ho + <him> (2.14) the notation

and v ha; ot course zero mean value if h0 = -<h ir>. For any EI.0(y) 0 EI(y) - Eo(y) (3.4)
arbitrary l,'z> it is then possible to use the constant term ho in the
Volterra expansion (2.2) in such a wy that y becomes zero and we define the signal vector by an expression similar to
mean. In the following we assume that this is realized. This (2.12) where the xms are replaced by their components
v,as already the case in [21 when linear-quadratic systems were
ss ritten Is> A EI [IX>

IE " ), E (X~.2 ].i2 E
v = hdx 4 x'M x - Tr(CM), (2.15) = -/ 0(xil), E 1 0 (xi 1] ] .. E 0 (x[i].

%A here x is zero mean and with coariance matrix C. 2 .

It is clear that the first elements of (3.5) are deduced from the

3. OPTIMAL VF FOR DETECTION mean value and covariance of x under H0 and H1. The other
terms have the same meaning for higher order moments. With

The most elementary and typical detection problem is an hy- this notation we get
pothesis testing problem between two simple hypotheses H0 and

t/1 specified by two probability distributions po(x) and N = <his>2 . (3.6)
p,(x)[31141151. The optimal detection system, whatever the
criterion, must calculate the likelihood ratio (LR) L(x) = As y is zero mean under Ho, its variance is Eo(y 2), or

p 1tx) IP( x).

The decision between fH and /l is taken by comparing the V$(y) = E1 [ <hlX> <Xih>], (3.7)

I.R , ith a threshold which can depend on the particular criteriot

of optimality used. This L.R is in general a nonlinear tunction of which can be written

the observation vector and sometimes di ' ult to implement. It is
the , "resting to approximate this I.. y systems like 2.1) 1,,(v) = <hi K Ih> (.8

wAhiyh are easier to realize. For this purpose we can use the with

pw pcry ()t in variance by a moinotonic transformation I51, which K Q' Eo IIX> <xi. (3.9)
nCti ncs all or iu:, to simplify the structure. By this procedure

the I.R for detecting N(0, ) against N(s. I- ) can ',c trans- This is a positive definite symmetric operator. As a result we
iricd i to a Iineair system wh hich is the classical matched fll- can write N as <h, vi KK 1;s, v> and from the Schwarz inequal-

reri[S((l'i ity we deduce that the maximum value of the deflection obtained
Ai,,thcr appr,)ach is to approximate the LR by uing the de with a Volterra filter of order v is

!I, ti,, ritr,,n Th e (dclcctin) fa ficr uch as 2. ) is givcn
r)' . i(

-
r t' tl ,, . K I .I,, > . 13.1I )

( . )

It is obtained for h. v> = (K . i> and the corrcsponding
()purmal h r ,



7',,,(x) = a <s. vi K I LX, v>. (3.11) tion and the output z is an estimate of y, sometimes written as
s(.:). We will then use the term of observation space for I/,.

We will assume henceforth that c = 1. This result gives the The optimum filter giving the best MSE x) of y is such that

classical matched filter [61 for v = 1, and the optimal linear- the distance between v and Ax is minimum. As the observation

quadratic filter for v = 2 121. The exact calculation of this filter space is a Hilbert subspace, we deduce immediately that 'xx) is

reqtuires the calculation of K-1 Is, v> or of I, v>, solution of the the projection of y onto the observation space l, or

equation
)(x) = Projily I HJ h(x. (.2)

K IV > = Is>, (3.12)

This is the geometrical definition of the optimum filter. In or-

which can ef course be a tedious job for high values of v. As a der to calculate it explicitly we will use the orthogonality princi-
result, T., takes the form pie stating that y - h(x) is orthogonal to Ht,. This means that for

any g(x) e II, we have

Toix) = <,tX>. (3.13)

E{[y- h(x)] g(x)} = 0. (4.3)

Let us now consider the basic equation (3.12) defining the
optimal VF for detection. The higher order statistics of the ob- It is well known 19) that the solution of this problem give:, the
servation tinder 11o and HI appears both in K and in Is>. The conditional expectation value, sometimes called the regression,
operator K is an expectation value under H0, or under the hy- or
pothesis of noise only. But, looking at (2.12), we see that the h(x) = Ely I x]. (4.4)
exact calculation of K needs the knowledge of moments ofx till
the order 2v. On the other hand, we see in (3.5) that the calcula- After the introduction of these notations, we return to our
tion of Is> requires the knowledge of the moments of x till the problem of optimum MSE with Volterra filters. Clearly, the re-
order v, but Linder the two hypotheses H0 and l/1 separately. A gression h(x) defined by (4.4) is not in general a VF of any or-
complete solution of (3.12) for v = 2 is discussed in [21. der. In order to find the best VF for the estimation of Y, let us

4. OVIIMAL VF FOR MEAN SQUARE ESTIMATION the space H, defined by

Consider a zero mean random vector x(co) element of IR v.  H, = (g(x) I g(x) = <g, v IX, v> and g(x) E L2). (4.5)
When no ambiguity is possible, this vector is simply written x,
and called the observation vector. From this observation we It is clearly a subspace of H, because we restrict the possible
want to estimate a scalar random variable y(w), also written sim- filters to those having the structure of a VF of order v. With this
ply y. restriction, the best optimal VF for estimation is still given by

We will assume that the components xi of x and y are second (4.2), where H, is replaced by /I,,.
order zero mean random variables. As a result they can be con- The explicit solution is deduced from the orthogonality prin-
sidered as vectors of the Hilbert space L 2 for which the scalar ciple stating that for any g(x) E I/ we have
product of two vectors u and v is E(uv).

A filter similar to (2.1) is specified by its input-output rela- y,'{ -(xtj g(x)) = 0. (4.6)
tiomship z = g(x . As the input x is random, the output z is also
random. L.et Us now introdace the subspace t1x of L2 defined by Writing g(x) as <gIX> and th, optimal estimate V x) as .(X) =

<h IX>, we obtain
tll~ f{(x) l ,g(E L2}. (4.1)

El - <hIX>l < Xlg> = 0. (4.7)
I is sp;tce contains all the outputs of filters ,hich arc sccomd
(order random variables. The space is indexed by x not only be- As this is valid for any Ig>, we obtain Ih> by
cause tile input Is x. but also because it depends on the statistical

Frperties of x. 1o explain this. consider the very common ex- K h> = h> , (4.8)
ample x x, .which is a (1lIdratic filter used ir many aspects
o 7 sgnali s,,ing 7. XI. The oitput of this filter belongs to vs here K is given by (3.9) and Ic> is defined by
I- otnlv It x has tieIC fourih-order moments, which iN n-;
nccesari Itrt;e even though the components x, of x are second I> > l'IN IX> 1. (4.9)
,ordcr. In MSF froblIem-s the tnpiit x is the resilt of an obsrva



This vector specifies the correlation between the random The first property is a direct consequence of (5.6) giving the
variable y and all the components of LY> appearing in (2.12). value of Ig> equal to 17, s,>. For the second property let is note

The main conclusion of the calculation is that even though the from (5.1) and (5.4) that

strt.:ure of the Volterra filter is highly nonlinear, the optimum a(x) A= <aIX, s> = <a , sIlX>. (5.7)
filter for estimation is obtained by a linear equation (4.8) which
is exactly the same as for linear MSE. As x, - u(x) is equal to d-2 To..(x), we deduce from (3.13) and

Finally, note that the optimum Volterra filter for MSE is not (3.12) that
an approximation of the regression h(x) by a finite Taylor ex-
panion. In fact, when the order v is increased, all the coeffi- - 2  K-(x, - tv~x = d'<. l K1IX>. (5.8)
cients h,, of !h, v> must be recalculated by (4.8), while they re- v

main the same for a Taylor expansion. Then

5. RELATIONS BETWEEN DETECTION AND ESTIMATION E[{x, - ulx))a(x) = d-2 E[<sl K-1 IX> <X la, s_>]

We %kill now extend to Volterra filters of order v a geometrical d 2 <.sia, s> = 0 (5.9)
interpretation of optimal filtering for detection given for linear
matched filters in 161 and for linear-quadratic filters in 121. For because of the definition of K by (3.9) and of la, s,> by (5.1).
this purpose let us note that from the projection theorem, any ar- This shows the orthogonlity property.
bitrarv' vector la> of IR v] can be written as As a result of the above we see that the optimal Voiterra filter

for detection can be written in the form
la Is> + Ia, s(>, (5.1)

T,,.(x) =d 2 x1 ,1r . _ . ( .0
where a, s,> is the projection of la> onto the subspace of IRNvvJ ] X (5.10)

or-thogonal to Is>. Furtherniore the component a, is given by In this expression x, is the component of the observation vector

A IX> in the signal direction Is> defined by (3.5), while ' is the v-
a = s2 <sla> ; s = <sis>. (5.2) order mean square estimation of x, in terms of the observation

orthogonal to the vector signal Is>. As x, - J, is the innovation

This can be done for IX> and I > used in (3.13), or x5 in our estimation problem, the variance of T0, ,(x) is directly
connected to the error , of the estimation problem. More pre-

>= cs Is> +IS, s,> (5.3) cisely, as the variance of To.V(x) is d2 defined by (3.11), we
have

lx> = Is> + IX, s>. (5.4) C = Id2 • (5.11)

52sing a s2)e obtain This shows a relation between singular estimation (E" = 0)
and singular detection ( t12 )

c, = s2 <,s-> = s-<sI K Is> = s d, , 5.5) Let us now give a more detailed interpretation of (5.10). As,
from (3.11 ), the optimal receiver is invariant after a multipli-
cation by a constant term, we can write (5.10) on the form

where dI is defined by (3.10. Furthermore, as Is> is orthogo-
nal to an'.' vector of the kind la, s,>, (3.13) can be written as To),(x) = _r -_X (5.12)

. (x 2 = dX + <V, sIX, .S> = d2 [x. - t(x)!. (5.6) which is the simplest possible form of the optimal filter for de-
tection. The term x,. is given by (5.2), or

Let us, now demonstrate that the term u(x) is the v-order mcan x,= s-2 <six> (5.13)
square estimation of x, in terms of IX. s,>. F(,- .!is purose we
must ,hov that and corresponds to (3.11) either when K is proportional to the

I U(x) i,, oh-iained by a Volterra filter from IX, s,>. or li(x) = unity operator or when Is> is an eigenvector of K. For i the
<., -X. a ---. first situation corresponds to the case of second order white

I, -. IOxI s rthoconal, which means uncorrelated. to all
nloise.

S.' , nal,, ,ot 4 !h • rm a X. . This property is the orth''g- let us discu.,s this last point a little more precisely by consid-

, WI. p ip cring the cases of v = I and 2.



For v =I., K defined by (3.9) becomes the correlation matrix simply as the output of the optimal filter for a white noise, as for
of the vector x, because we have seek After (2.4) that IX, I-> = 1, = 1.
x. The assuimption that K is diagonal means that the components
of x are uncorrelated. sk hich characterizes a second order white 6. EXTENSIONS
noise. Furthermore it's is ant eiizenvalue of K, the linear matched

filter sTK tx is proportional to sTx, exactly as for a white noise. The same kind of method has been applied to parameter es-
For v = 2 it is not necessarily possible to find a random vector timation 1101 and also to spatial processing I I11. In this latter

x such that K defined by ( 3.9) is diagonal, and this is especially case it is necessary to extend all the previous resuAs for complex

not the case for a Gau.'ia16t white noise, as w.e will now verify, random variables. This is very easy for second order moments,

For this we use somec rcsults presenzed in more detail in 121. The as is well known, but not for higher order moments. This is due

linear problem K11h. 2> =I1g, 2> can be written as a set of two to the choice of the complex conjugate in the structure of the
equations. For that we \vrite Ih. 2> =u, N!>. as after (2.5). and higher order moments, which cannot be discussed in a few
also 1g, 2> = I v, P>, where it and v are two vectors while M and words.
P are two matrices. The linear equation Kit, M> = Iv', P> then
becomnes
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The Trispectrum
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.Ahstra i In this paper, %&e present the tri-spectrum as a tool for and linearity when the process has skewness
use in the analysis ot nonlinear structural dependencies and deviations from measure of zero
multivariate normality of a randont process. We develop the trispectrum an aid in determining the order of the major
based tests of linearity and Gaussianity. These tests are natural extensions nonlinear term in times series data sequence

othe corresponding tests \khich use the bispectrum. Together the thle identification of cubic nonlineantieS arising as
bispecturnm and trispectrunt bjased test.s form a stronger case for the rejection perturbations in linear models
of the null hypotheses (-f linearity and Gaussianity than either one used 4) a check on the validity of the use of the square of

a!4,ne.the powser spectrum as an approximation for the
lresaimple variance of the periodogram 2.

T[his paper discusses the statistical properties of the ASSLItne that { X(t) I is a discrete real valued strictly

trispectrutr, and its application to the study of nonlinear or non- stationar y process with E(X(tu)= 0, E(Xt)2 < on, and a finite
Gaussiatn structure in time series data. The trispectrum is the spno pC1TCeDfieXXXUlUasteouhorr
fourth order cumulant spectrum of a random process. In the spant of dependefnc.Dine of'~ u~ 2 ia)a the sar-ieeisfout rder
analysis of random ptocesses. the trispectrum complements the jonAutuatfnton ftesaaie ssuofirandom
bispectrum'. the third order etirulant spectrum as a tool for the variables { Xo4) I Brillinger 121, section 2.6. 1). Asmn h
study of nonlinear structural dependence. Also, both can be summability conditions of the fourth order cumu'lant as, a
used to detect deviations fromn multivariate normality of a functiotn of- thle us implies that
random process. Together they form a more powerful T( J -t I Y- X (u u u
instrument for analyzing nonlitnear time series models than C 1' 3
either one used alone. u2=- ±~ u su 3  +

The trispectrum is the next polyspectral measure after
the bispectrum. In. the fiterature there are only a few papers that cxlp(-i27tf,'( f u f 3 ~fu 3)(
ever, hint at the computational aspects of the trispectrum (1151, whr Dj'1- I is t- rsetu~
1')1. and 141). Brillinge. and Rosenblatt [41 actually reported weePf. 2  stetipcrmn
trispectral values at various trifrequencies. The scheme 5 5(.00)-LXtXt 5u)Xtu)Xtu)-
developed in L-ii and Rosenblatt [81 for estimating the CXX~l (~)~ u)X(t u)X(ts-U3 1-
:ocf~icients, of d linear model is extended for use with the E(X(t)X(t.-u 5 )E~iuxt ,)

sr~pcruoinLi and Rucenblat 191. E(~)~su))EXWt u,)~~,)

A procedlure has been developed to compute the ELX(tUX(t4~u ))EX(t, u,)X(tVu 3)) (2).
trispcctrail esotmaics over 1h2. cotmplete principal domain. The
diaenosltic tcsis, lor linearity atid Gaussianity. based on the Thle Fourier transform of the fourth order moment
hispectram and dceseloperl by Subba Rao and Gabr 1121 and E(X(tA u, a. x(t, u,)X(t--u3,)) is the fourth order cutnulAnt
I litiich 161 were extendled for use with the trispectrum. The spectra plus three terms which are products (if a pair of second
inportince f) and need for trispectral anah~sis, comes fourfold: order carnua it spectra. We need to eliminate the influence of

Iia test with power of the hypotheses of Gaussianity ____________________

2)11 1,,rifmoh s tinienrt needs a little esplarratioti. The 01irplce
~~.j~ j 5 , j, . si the %arian,. of the pcriudo ral it thle SUM Of the:

l t tk~, n (ar i am, Nikia, ird Raghuseer 110) present quaari. ir:d plus a tri5 seek1uni toi sstiicli is, doildcd h%

.,e (iy 4 thie iirputit'onal red siaiistic~il properties of the ilk I 11C. 'thle estimlatir' . of ::re rrs 1)er runi allosks us ito test

h;vlr-runs roec practi,-al eo,sideraiiioii lir hispectral estitliaton the irpo jrliien,s, in) thle uise of the a.~ntitcestimate tor thle

.rc rse hs Suhha Rio( 1). Nii:ia, andI Naghurcc r Ito] is the Ai ri smne. thle periJ(!giarit.

r - jrres rei,-nrie reicreike~ tr die ruid, rai e It appli:ations 4 ' lie ji .,it [u J,11 ur u niit tllni are tire c tlei of (lie P, "A r series



the three lower order terms. To do this wse stay on the principal Equation (4) can be depicted as the decomposition of the fourth
manifold of the fourth order cumulant spectra, except for the order moment over tile trifrequencies in the principal domain.
region on this manifold that intersects the principal manifold of Taking tile square of the trispectrum and normalizing it
product of the second order cumulant spectra pairs. If we do by the product of its power spectra at its three frequencies
this then the trispectrum is the fourth order cumulant spectra. yields a standardized cumulant spectral function. The

[he trispectrum is in general L' complex valued, standardized cumulant spectral function was defined for the k-th
bounded. and uniformly continuous function on the principal order case by Brillinger [1] and is the square of the kurtosis

function for the fourth order case:,nlo' f f f 'f f= Cmodt 2rt! I2. \V'herc .f is related to 2 'a 1, ... 4 ~ 4 TA' 2= JT(f l'J"f ),2/

the othe frequcncies bp I - f ,-f . The fourth order 3

cunuIl alt Is tile In, erse Furicr .raisform of the fourth order S X(fl3)Xl 3) f XXiflif 2f 3spectrum or trispecurm. The fourth order cumulant can be

.,ritten as Equation (5) measures the degree to which the three
C\\(Li ,U ,U3 ) ff TI f,4 frequencies interact or beat together. For a linear process. all

' 2- f3 t ) orders of equation (5) are constant. If the process is Gaussian.
.24 then the constant is zero for all orders greater than two.

Before we describe the computational aspects of tile
exp i2(.f , 

-,. -I I t lddf.df (3) estimation of the trispectrum, we need to survey the symmetrics
of the trispectrunt. The trispectrum is defined over the cube

wi,cre k -.5- i 1.3}. {X,Y,Z:Xe (-.5,.5),YE (-.5,.5).ZE (-.5,.5)}. There are
Th condition. J , t,,IJ-,= 0 mod(2t) is a fr e q u e n c y  symmetries intioduced because some of the frequency

I t f components are related which reduces the region Ahich we
domain conept vs hiclh co rrronds to the time domain have to calculate the trispectral estimates over for a complete
condi:,n strict stationaritv. In other Aords, all the spectral description of the trispectrum. The principal domain of the
mass of the fourth order cumulant is located on this hyperplane trispectrum T(f ,ff3 ) for a stationary continuous tme process

and if the trequency ,ector (.. 3) does not lie on the X(t) is a triangular pointing cone in the positie octant
principal nanifold, the cumulant spectra will vanish. The strict
statiotarits and finite span of dependence assumptions aie more {f,i= 1,3:0< f}. The three sides of this cone are the planes
restr:ictie than those made by' Brillinger and Rosenblatt [3]. are formed by the intersections of three of the trispectrum's
These additional assumptitns are easier to understand and symmetry planes.
ensure that the asyrmptotic properties hold for the fourth-order The symmetry planes are easily derived from expressing
spectral cstimates that we ,,ill present. the trispectrum using St:,ljes integrals:

Tnc structure of the ( ,:ssiuin probability distribution is
completcir determined b) its spectral density. For the Gaussian EdA(f )dA(f,)dA(f )dA(f T(fl J.Jf)dfld ., (6)
case, there is no information in the higher order cumulant 3 d 2 3 d
spectra. For a non-Gaussian process, the joint distribution
depends, on the higner order cuinulants. where f4= -f-1-f The trispctrum is equal to zero in the

lligoher order dependiicies can be created by the action I 3
of a nonlincar filter with memory on a iid input signal. The four dimensional Euclidean space iff -f2+f +f 0 due to the
dependencies induced by the nonlinear filter are confounded inl stationarity of the process.
the spectrum of the output. It ,wc input a signal to a nonlinear There are two types of symmetries we must concern
filter that is non-Gaussiin, then the output signal is not ourselves with; 1) Permutations when one or two of the
Gaussian. In general, if tile filter is nonlinear then tile output is frequency pairs are equal and 2) Symmetries from the complex
a non-Gaussian dependent proc.ss. If we can characterize the conjugation operation.
structure of the join- distribution of a non-Gaussian time series The first type of permutation symmetry we '.ill discuss
that resuhs from nolinear iutering on an iiiput signal, theiwe is when a pair of frequencies are equal. The syrnmetry planes
mav be able to classifs and identily tile nonlinear mechanisms.p, ,,,c. ,,, n~linar iltes i an pen determined by per-muting the f're t, enlcy indices are:l) , I t
The idettito n l. f nonlinear filters is an open
(lueYin, e.en s hucn the util served inp.t is a Gaussian white 2) f f 3) f t i.e. 2f, j ) 4) J,- f 5)"f f
n,' ,,e pr4i Vc I I ,

lie tclti, 'ishmps h'Aecen the fouIth Corder cumulant and i.e. 2f,= -(f, .,). and 6) J,- J i.e. 2f 0 I .,). \ here
tIC tll" the frequency rane is as lo s { I 1 3 - <I < } and

*1 I( I),l dt di J44, f4>f I-f.,-f3
We have the second type of permutation sN mtnctry

s,,here two frequenIcy pars are equal. The syminetries that
wkhcrc th,:, pr in,:ipal dai. . { -. 5< <5 i=1,3}, correspond to this situation are: l 1 ' and f .4, i.c. f - -4



) t, t andY f I -- f, and 3)f(If and (i/6,1/6,1/6). This wedge shaped region where the trispectrum
S4 is defined is one o216 such equivalent principal domains that

t • make up the cube { X,Y,Z:Xe (.5,.5),YE (-.5,.5),ZE (-.5,.5) }.

The last ! pc ot s ,mmetry that comes into play is the The general procedure followed for the frequency domain
ii,,mietr, that arises finn the tricovariance function being only estimition of a time series is described in Hinich and Clay 17[

delmcd for real valucs. This is the symmetry from the coniplex and Priestley 11 11. A block averaging procedure is used to
n on , tprktcn. i e T' ( f ,f J3  T(- f I) where lower the variance of the periodogram estimates at the cost of~:lu"tion opert,, i.e. T ).2t 3. w e having a coarser grid spacing for the spectral estimates. The
Tcpresents the conjugation operation. The conjugation block size must be chosen that will properly utilize this bias-

-T,, tries form when one of the the four frequencies is set to variance trade off. Followking the suggestion in Hinich [61

cer. Thev are: 1) ri 0. i.e. J--fl J* = 0, 2) f,- 0, i.e. based on consistency, the suggested block length should be
4 approximately the (n-l)-th root of the sample size if we are

0. 3) 0f . i.e. f ..-f,-it 0. and 4) f i. . working with the n-th order spectrum. In the case of the
0. trispectrum, the suggested block length is the cube root of the
iom t r isample size.

From the forementioner symmetries, vwe can describe First transform the data using a fast Fourier transform.
'he o AIous and discrete time principal domains of the At ftO, we set X(f)=0 which is equivalent to subtracting off
):-'irtm. The cone that forms the continuous time principal
,. Jll i., a Aedee-h sped hyperplane in the frequency triple the mean. We calculate the spectrum on each block and then

calculate a block average spectrum. The trispectral estimates are
i, e continuous time principal domain is the ,, edge- the fourth order products normalized by the block size L:

,.'',,,d' cone in the positive octant with coordinates
_ f . T(ff.f3)= X(f )X(f )X(f JX(LB-f -f-f 3 )/LB (7).

Now, if Ae band limit the process at the frequency ,,. uiere the X(f)'s are the Fourier transforms of the series

il .:e i, no variance at in frequency greater than f 0 * This ,,,ill { X(t) I and are asymptotically complex Gaussian raidon

, : e the continuous time principal domain to be cut off. This variables. In the fourth order product of the transformed
is .> .._' ,f te , )lvowing constraints which are imposed by sariables (equation (7)), if any subset of these four frequencies
1 be:d imitin of t 'e process: I ) f,= +f01 i= 1,3, 2) are equal, this product needs to be adjusted. This adjustment is

for the different asymptotic estimates for the variance of
- 3 , 4 . +_., and 5). f _ .t -f equation (7) that arise for these cases. For the trispectrum.
For a hand limited p-,rcss, the continuous time support .c: is subsets of two and three frequencies can be equal. The
the pramid-shapc w, ,edge with sertices (0,0,0), (1/2,0,0), & appropriate sca.le factors for these two situations are two a,,d six

i. t 4.0), and apcx 1 1/. 1/ ). respectively.
The principal dIonin )fI the trispectrum for the discrete Under the null hy Fotheses of linearity and Gaussianity,

im'ic band limited process can he derived in a similar mainer ai the estimated trispectruin should not be statistically different
\k a s, done for the principal dmuain of the bispectrum. I1 .,e from zero. At a given frequency triple, the test statistic for the

ample at the N.quist frequency 2f , the principal domain of null hypothesis is

tic trL it in discrete time is a pyramid with a triangular I ,"
his that is larger than the support set for the continuous time I 2l .f,, f)/A (8)

'11- 1i'ited trispe,.tum. Sampling at the Nyquist trcquene> where X tpproxitnatelv a central chs
itT,,ducc., a infinite number of parallel symmetry plane, wer 2 hi-squared statistic

I '',C .,Mmetr, planes are formed when f f2,+f 3-f4 it K. with two degrees of freedom and GA2 is the asymptotic s ariance
of the trispectral estimates. The asymptotic variance is used to

.2 .....:. If we saniple at the Nyquist frequency. ,. normalize the test statistic and is derived in Brillinger 121. The
.te l~,,,neit!anes of symmetry: 1) 21, 1J2 - i. asymptotic variance is given by tlm following:

.n 3 I n" n re n 0,1 . , I (N A ")Sx(f )S ( )S ,(t )S " (f +f,+f ) 9 )
'I he principal dim namn tor the hand limited discrete time P' " " 2 - -

tFrind bs the ilteisection of the planes 21 - , here A is the grid size (1.1,j). From equation (81, we can get

,q 1 ) t 0 under the c ,tiiraint, 01 3 2_ if .jp . [he I ic- the flAlowing global statistic for testing the null hypolthcsis of

id nvtnnrnics uinpl, that n- a complete description of (jaussianity,
I o dr,,rctc time batd limtited trispectrum, we just nced to .su ' -F (10)

, n'i-ui the tmstrNnlt)e in'aIC-, over a principal domain which

d '.C- 2: shaped p,ramid wkith a three-sided base. This 22! 5

;ild h , ,cItIIcs (0.0),0), (1:2,0,0), & (1/1,'1 ,0), and apeX



2 As an extension of the bispectral tests developed in
Under the null hypothesis, X sum (equation (10)) is Hinich [61, we examine over the complete principal domain the

approximately chi-squared with 2Nt degrees of freedom, where collection of trispectral estimators of the form 2Vu. U is
N, is the number of trifrequencies in the principal domain. dein as los e

When the sample size is large, we start to have difficulties in

using the central chi-squared statistic. It is convenient to use a, • 2 "U=(N/LB3)(T(f I,f2,f)/

approximation for the sum of chi-squares X sum' We transform
the chi-squared variates to Gaussian random variables which (S(f )S(f,)S(f3)S (f i+f2+f3)) ) (14)
are easier to work with when you have large samples. We
should be point out, that the rejection of Gaussianity in general These estimators are asymptotically independent non-central
does not imply that the process is non-linear. 2

The I linich [61 and Subba Rao and Gabr [12] statistical chi-squared variates, X2(2,2,'2) with non-centrality parameter
tests serve as a criteria for testing whether to reject the null
hypotheses of linearity and Gaussianity of a time series. Their 2["V 2

tests are based on the sample bispectral estimates. Here we will If the series { X(t) I is Gaussian, the trispectrum
extend the ttinich tests for linearity and Gaussianity for use T(f If ) is zero for all the trifrequencies in ire principal
with the sample trispectral estimates. The importance of these T 2,f 3
trispectral tests stem from the fact that a non-Gaussian process domain. Under the nuli hypothesis of Gaussianity we have the

can have bispectral estimates B(f ,f2 ) statistically equal to zero statistic:

fo...I1 frequency pairs (f'f ) in the principal domain. Also,
the test for the constancy of the square of the skewness function I l2

TI, does not always imply a linear model. This is because which is asymptotically distributed as a central chi-squared

there are processes that are nonlinear, but have zero skewness variate with 2p degrees of freedom. Where p is the number of
measure. frequency triples in the principle domain. See Hinich [61 for

The tinich tests are nonparametric and robust in nature. the asymptotic power of the test, and the proof of the
The use cf the large sample properties of the sample trispectrum consistency for the test.
will be the basis of the proposed trispectral tests. For the The rejection of linearity using the bispectrum may not
trispectrum, using the square of the average kurtcsis function, be adequate, especially if the non-linearities are of a cubic
we have the test for Gaussianity. Assume that a process nature. This alone varrants the need for additional statistical

X(t) } is a generated by a non-Gaussian linear process that is tests of the null hypothesis for the linearity of a process. A test
based on the sample trispectrum is the natural extension.

purely random. If { a(t) } is a summable filter, i.e Y_ la(t)<o, Together, bispectral and trispectral based tests form a stronger
the trispectrum can be Asriten in terms of the transfer function case for the rejection of the null hypothesis of linearity.
A(f) IBrillinger [21): Under the null hypothesis, having a sequence of

observations X(t) that is linear, although not necessarily

Tl(f I.f2,fl)= P4A(f iArf2)A(f 3)A*(fl+f2+f3) (11) Gaussian, 2Vi implies the non-centrality partmeter is a
constant over all the trifrequencies independent of the block

with Jt. E(XVt)4 ), the asterisk denotes the complex conjugate size. This constant )-0 can be estimated as the median of the p
and estimators of the form 2 ul[.

Aif) -I ame -i2 ' t)  (12). If we accept the null hypothesis, then the estimators of

t= 0,0 the form 2'V 2 are asymptotically independent samples from a

Since the spectru, m of XWt) is Sx(f) ~GIf2 it follows for X 2 (2X0) distribution. Under the null hypothesis. each of the
a linear process the square of the kurtosis function is the statistics 2lbj 2 is an independent sample from a X2(2,2 13 2)

following constant:
distribution. With this in mind, a sample of size p of these

\2' 2 t 2  /(3,S (13) statistics should have the sample dispersion of a 2(2.

distribution. Thc sample dispersio: should conver.ge to the
actual dispersion cOC fticient as the number of trifrecquencic,

wxhere ', is defined as in equations (5), and ;,x2 is the approaches infinit\, Accordingly. if the null h .pothesis is

estimate tt the variance fo- the process { X(t) }. For a linear rejected, then the I n ccii ratIi t pirameters are not a I the same.
pri cess cqultion (13) is constant. If the process is Gaussian, This implies that cach observed 2 1- is all independcnt sample
then the crirstant is zero for all orders greater than two. from a non -central chi- squared distribution, each %%i th a the
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THE IDENTIFICATION OF CF:RTAIN NONLINEAR SYSTEMS BY
ONLY OBSERVING THE OUTPUT

NOVELLONE ROZARIO ATIIANASIOS PAPOULIS
GE ASTRO SPACE DIVISION POLY'IE.CIINI(C UNIV[-RSITY
PRINCETON, N.J FARMINC'DALE, N.Y

ABSTRACT
Our method is based on the following o;bscrvation: T!!-

We propose a method for ide-tifying a certain type of non-linear polyspectrum of y(t) is real-valued because it is a fuitctioii Uf the
system from observations of the output only. The input to the power spectrum of the Gaussian process u(t). and for a
system is assumed to be Gaussian, and the system itself is made memoryless nonlinear system, this function maps the set of reals
up of two minimum-phase linear systems separated by a into the set of reals. Hence, the phase of the polyspectrum of
memorvless nonlinearity. Our method is based on the simple y(t) is entirely due to the phase of the linear system H,(W).
obeservation that the polysp.ctrum of a Gaussian process is -

real-valued. Therefore, we can use the methods in 11,4.8] to estimate the

phase of H2(co), anc then use the minimum-phase assumption to

obtain its magnitude. With H2(wO) thus determined, we can
obtain v(t) with an inverse operation. Once v(t) is known, its
probability density function (pdf) can be found and compared
with the gaussian pdf of u(t) to yield the memoryless nonlinear

I. INTRODUCTION transformation G(.). From this we get the process u(t). And

finally, we ez H,',o) by factorizing the power spectrum of
Given a stationary proce,,;, , familiar probletn in signal u(t).

analysis is the rcpresentation of this process as the output of a
system driven by white-noise. An assumption commonly made Our motivation for studying this problem is due to its
is that the system is linear. In this paper we consider a nonlinear applications in communications I I. In man' satellite sstems,
model, and we propose a method to identify the model, the solid state power amplifier or TWTA must be operated in a

highly nonlinear mode in order to conserve power. Although theWhen the model is linear, its identification can be baseband signal x(t) is not necessarily gaussian. the effect of a
accomplished in a variety of ways I 1-81, and the methods that
use higher-order sp, cuta and moments have recently gained band-limiting filter such as HI(cY on x(t) is to render it more
wide popularity. But it is in the study of nonlinear systems that gaussian, and hence the methods presented here are applicable.
one discovers the undisputed strength of higher-order spectra Aiso, in some cases, there are several subearriers simultaneously
19-12). For example, the presence of intermodulation and present, thereby giving rise to intermodulation effects. In this
harmonics that result from nonlinear interactions are easily case the bispectrum is composed of lines but its phase is
revealed by an examination of the bispectrum 110,18]. And the completely determined by H2(W), and using high resolution
question of whether a process can be considered linear or not parametric estimation techniques 1161, one can hope to identify
can also be answered in a similar manner [91. For processes
,whose underlying model is nonlinear, the problem of identifying 112(o). It must also be added, that although magnitude
the model usually requires knowledge of both the input and the inform-tion is missing in the evaliation of l Iw), most of the
output [11-141. It has been shown I11 -121 that higher-order
cross-spectral methods are very effective in these situations, distortion is due to the phase of H2i(a).

In this paper we consider the system shown in figure 1. In section II, a justification of the real-valuedness of v(t) is
This system is composed of two linear systems separated by a presented. We also discuss the method for obtaining G(.). In

nlinear memoryless system. The input is gaussian lhite section III, we consider the effects of a slight nongaussian
noise. The identification of such a system has also been component in u(t). Finally, in sectiontV, we present simulation
considered in 1121, and it is performed by calculating the results.
cross-polyspectra between x(t) and y(t). Thi.; approach
therefore requires knowledge of both the input and the output. > >
I lo evcr. we can show that the above system can be identified ..... _ -------- Gt -----. I I1 () --------
from kno sledge of the output y(ft) only, provided we assume x(t(t) t) v(I) i(t)

that (a) 11 (o) and ll,(w) are minimum phase, and (b G(.) is Figure 1. The todel.
Fiur 1.''em d l



Notation:- x(t). u(t), wt) and y(t) are the stationary processes Taking the transform V,,(w) of vn(t), we get
shown in figure 1, and their Fourier integrals 1201 willtice

denoted by X(co),U(W).V(W), and Y(o4 respectively. ThuIs, for Vn((O) J vn(t0e-il1 dt

x~t) =(1/2 7E)J X(co)eJ"~ dco and Valo) =J x(t)e ill' dt .(6)

When the limits of an integral are omitted, it wNill be understood and, V(w) = Y, Vn(w) . (7)
that the integral i~ to be evaluated from -- to +-o. Onl the otlter
hand, by, w I we shl enta hs nerliob From (6),(7) and from the linearity property Of cumu11.lants, it can

evaluated from -nt to +7-,. A similar renmark applies in using 1. be seen that the cumulant K ( Vo(tl) V'co)2 )- NX(jk, is a
The nth order cumulant of the random variables zz.~ znA l function of cumulants of the form

be denoted by Kizl ., zn). Similarly, the nth order mioment
of these random variables will be denoted by E(z1.z-...z,}. KL'O 1 )UCl.U(ln,(h)L(l).()n)

The autocorrelation of x(t) will be denoted by R~t); ;- R, r) - U(oikI)U((ok2)U()kn)) (8)

R,,(-E)= Ktx(t),x(t+t) I. the subscript being omitted only when
~hvius.'Thi no.~'and this function maps the set of reais into the set of reals. Us~ing

ntgfler-ordler case. For example. the product theorem tn 113,191, (8) may be turther reducedl to a1
Rclj))=_Rxx( 1T, =KJX~),~tTlXt+,)1,sumn of cumulants of the form K1UX)UX)..UXII And

and. RxxyTlE,,)=_ Kx~t.x~tEsince U((o) is Gaussian, only the second order cumulants 'A ill he

nonzero.That is, the cumulant K(V(w1 ).V(oJ)4)..., V(oyj) is a

The owe spctru ofx~t wil bedentedby ~o))-_ ,,(,)) real valued function of the power spectrum of u(t). T~he k- Ith
The owe spco-u ofx~t wil bedented y 5c))order polvspe-tnmn; f 'u is then given by

Fourier Transform of R,,(T). Higher-order spectra will be
denoted in a similar manner. For example, S(cot(02-...k) dotdw,..doktI
S(cot,ot) Sx~xX(Cwt.C 2 ) EFourier Tansfomrn Of RXX,\(T 1 .Ti), Kd w), o.

and, 5 xxy~~o~)l~), Fcurier Tansform of Rxyt. 2 .with ct+w 2 +..+(0 = 0

In order to estimate G;(.) from the pd.' of v (t) we must
assume that G(.) is monotone increasing. Otherw ise the solution
is not unique. For example, suppose the function v=G(u) "~ere

!NONLINEAR TRANSFORMATION OFAP GAUSSIAN monotone increasing. Then, in terms of probability
PROCESS distributions, we can obtain the relationship v=G(u) by reqi~ring

that
Consider the process v(t) obtained from u(t) by a Ptv(t)!<v1 = Piu(t)! +u)()

memot-yless nonlinear transformation, oF()=Fu
v(t) = GQu(t)). He)r, F,()adF() ar thF roaiit(itrbtinfncin

Now the poiyspectrum of v(t) is a function of the HrF()adF()aetepoaiiydsrbto ucin
polyspectra of u(t). Also, since G('.) is a memoryless of v(t0 and u(t) respectively, and P denotes probability. On the
transformation, this function must be such that the set of reals is other hand, suppose the function v=G(U) were not monotonic,
mapped into the set of reals. As for the polyspectra of u(t). the say v(t)=u 2(t). Then the distribution functions would be related
only nonzero polyspectrum of u(t) is its power spectrum, which by
is real valued. Hence all the polyspectra of i'(t) o're real valued PJV(t)< vl Pf-u~u(t)!S+u1
These statements can be justified analytica~ly b ling that or, Fv(v) =F.(u)- F,(-u).
G(u(t)) may be written as a Taylor series Thus, we see that the solution to V=G(uI is not unique, and tile

v(t) . a~un(t). (2) proper solution requires prior information.
We may now use a theorem stated and proved in [lI9, to show
that the polyspectruIm of v(t) can be written as a function of the 1ll. DEVIATIONS FROM GAUSSIANITY
polyspectra of u(t). However, for the benefit of the reader, we
will give a brief sketch of the proof. We may w rite (2) as Consider the process

vt a1nun(t) u(t)=n(t)±e( t) , I10)

aJ X ( 1 /27t)J U(omeil,'~ do) In wvhere. n(t) is a Gaussian process

= na,( I /2,En fJJ L(o) (), ).U_~emdlddcon
L~, (3) e(t) is a non-Gaussian process, and emt )<wit).

Assume also that e(t) is independent of nut

where, Let v(t) = G(tw~)i G(n(tn + ed ).G'(n(t)
v,(t i=a,( l/2 7 onrffJU(o0 1 )1(, )) ll((),)e-i ''dm(0) ..'d wn (4) = ant) + emt.b(t).

and (1~+),+ .. + 0).)=0 (5)



We shall assume that n~t) and e(t) are zero-mean. Note that this. In deriving this result we have also shwo that it is the last term
however. does not imply that a(t) and b(t) are zero-mnean. Let us of ( 16) that causes the phase of S ...o1 coo,) to deviate fromn
evaluatze the third-order moment,, of v(t).

zero.

K( {Ue~ih~(.aA~' )eOt1 b~-t~),~i+ +et-.jt(O-')IV. THE EFFECT OF H1(o ONI ilE STATIS i ICS OF TIHE
K (a 0+a i(0bt a(t+TIet' rI)(+i)a( ,101,((+U) PHASE (AN EXAMPLE)

" K (e(,b(0,aL-tTI ),a([+ T2)) We have seen that the phase of the bispectrum of v(t) is
4- K (a t).et+rIb(t-f-twa~t+T I) theoretically zero. Therefore, an estimation of this phase, when

iK (ai~t,aot+Tj .O+t2 b(t+T 2) I-11 1(w) and G(u) are simple functions, should give some idea of

" K e( ow t),a (t+ 1 je(t+T)b(t+T'1) the kind of errors to be expected. Let H1(co) be as shown in
" K aioe(t-tI )bitTI ),euI+tb(L+TtI) figure 2 a) and b). Thus. H1 (o)) is a lowpass filter with
" K (e~obbd),e(t+T 1 h(t+Ti ),e t+tbk1+T 1) (12) bandwidth oT=~T/2 anid let v(t) = G(u(t)) = U2(t). Let u(t) and

N ow. v(t). be discrete stochastic processes which we shall denote by
K [ett)bu),ao-t-[ ),a(t+t,2) = K I e(t),btxa(t+T j).a(t+t',) I ufnj anc; v[nl respectively. The autocorrelation ofv[nl is then

+ K I ew).KK bu),a0+TL.a(t+T2)) R [ml = K jv~nj, i'jn+m[ )
= 0) , (13) = K(u 2[n], U2[n+mII

becau .e, eUr) is a zero-mean process independent of a(t) and = 2K(u[n], u~n+mfl 2

h(ti. I ence the 2nd, 3rd, and 4th term in ()are zero. Now lets = 2(R,[mI)2. (17)
loo~k at the 5th term.
K j ei t~bi t),e(lt+tl)(,+T 1 ).a(t+t',)I And the power spectrumn of vin I is therefore

=K (ekoe(t~rl ) .K I b(t),bt+r1 ),a(t+tji) S,( i) = Z, R~[ml e-jJ~m
+K tert),e(t+r 1)).K Ib(t),a(1+T2)I .K [b(t+z 1))1 22T S~)ji-~

= ~t .Ihlt~t)-tRh (t,)±Rb,(T2 -Tl)1b. (14) =(2/2nh) SJ(L.) *S,,(p.) . (18)

Nowk a(t) and b(t) are obtained via memoryless nonlinear Next, let's evaluate the third-order moment R,[I,m]:
tranistorriations of (lhe samne Gaussian process n(r). Hence jm =Kvnvnm vnm
RhhA~r %ktj ill onlyV be a function of the autocorrelations of R[,l=Kvnvnmvnm

= Klu2lnJ, U2ln+m], u2[n+m]
n(t). namely. R,,(t 1 ), Rn(T2) R,(T1 T,). Similar remarks apply to = 8K(ulnJ, uln+l1]IK~uln+l], ti[n+m I K~ujn], u[n~m]I

Rh(, n rmthis it follows that substituting -- =n 9RJI1 R,,[l-m] Rum]. (19)
Rh~~~1(t 2~ an ht-n.Fo going from the second to the third line of (19), we used the

for Tand -t, for t, Iives (14) the same. In other wkords, the "indecomposable-partition product rule"[ 13,191, and the fact that
Fourier transform of (14) is real-valued. The same concluson uln] is a stationary zero-mean gaussian process.
hnlds for the Fourier trans form of the 6th and 7th terms of (12).

Finally, for the last term of (12), we have IThe bispectrum of vfnj is now, given by
K I tiob)eu(-rz)b(t+T,) )e(I+T2)h(i+T2)) S,(G i') = 1L.m RJIl,mJ e-.(X+WTfl
=K I e(tx.e t+tj ),e~ttT) I.E ( h t.bQt+T .bQi+T2) = 8 Y1,m RJ[l RJ1l-mI Ru[ml e-i(?x+Ira) [from (19)]
=R,.(T1 IT-,)I Rh =h8 X.1(R+([lI extR(X RuC2flil, Rc[mI eJPtrn ))

I-(15) =8 ; Rl e R JJ (Y/2ltjm-lS~c)Us-~~J() Ijejn

The Fourier transform of this term is. in general. not real valued. =8E j ejl(/T~

Substituting our results hack in ( 12) we obtain = 8 ( l/210f(-,+)SMwSj(J)) oI YlR Il(+) )

R,, (T ,) = 8 (l/2Th)f(.T1+) SU(w)SU(1s-o)S[X +o dco

(r .z,)= 8 (11211) [SJ1 X) *Sj(lp+)j S,,(?,) (20)

From (18) and (20), the hi coherence fl181 of v~ni is given by

+±R,,(tz-T 1 1. Rhh(T2-T T I )+t Rt,,-7c+~-z)~h I ic,(X,4) = S,(XlI) I (S,(k) S,(I1) S,(X+lI)

(16) '[S.(P.) *Su(F1)1.lSa(X) *SXIS[+)*S,(h+XI (21)



T'his expression mnin' he evdsirited for iny fiin'rion S (X) by V.CNLSO
means of FFE's.

We have shown that certain nonlinear systems can be
It is important to examine the bicoherence function beca-iuse its ident'ied from ohservations of the output only. HIoever, in
\,tatistical properties are approxinmately independent of the powser order to obtain a unique solution it is necessary to make -Stronl"

spc"~IU- 7 1. The bist,."Tum S.( .i). on the other hand, has a assumptions regarding the nature of the nonlinear systemn znd the
varincetha isproortona to'S,(,) ,(p S,,+p. I fi.3, input process. The effect of a nongaussian inpsut .vas ,comifcrted
varanc tht s popotinalto ~(X S~s)S9.pj Infig3, both analytically . The effect that the bandlimitint, filter Iji((

sse hav).e plotted the bicoherence of v In I for the followin g three (before the memoryless nonlinearity) has on the the statistics of'
special eases:thbipcumwssuidhmanofsmleapl.

(at) theory. with Hlt(o) and G(u) as in fig 2. tehsetu a tde ymaso ipeeanl

(h) simnulation, with Hl(w) and Gu) as in fig 2. REFERENCES
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"Phase estimation using the bispectrum".
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Abstract - 4e will discuss t- prob 1 em of The Fisher's test 6 is the case when ti.
',i;g the number of sinusoids in nonGaussiait noi5( process N is assuiied to he zero sean haussitln

noise nvronment. Most tests of significance for t

2.e es'.tence of sinusoids are based on second order white noise with variance a The null
s Vatis is. Such testing procedures include

isher's test, Bartlett's test. T;hitle's Lest among can he stated as

we wii use information contained in the 11 thbarmo' sinal Yt is zeoi 7
highe r order (third and fourth) spectral function as C t

tel! as second order spectral function to form more Under 11 the periodogram of the process X

powerfol tests. Some -i.-4 L~uiits are ZN . )2
discus .

T
he question of signal to noise ratio I(A) = (2/N) 1 x exp(-ttAW with A >/N

h respect to the sample siZe are considered. has a Chi-square distribution with 2 degrtes of

S i:u I n i,:- ap e and sunspot data are used to 2

dcipol.strare th effect iveness of the methods, freedom, if it is divided by C Furthermore.

I O(A.) an11d IN (AQ are independent if j-k with
I INTRODUCTIONN Nk

A 2rm/N for j k- ,2 ..... N 2' .  This esul t il;o
A .vpiai :i al plus noise model is of the jT

aocm holds for any fixed number of frequencies as.vpoti-

call>' when the noise process Z is independent.x ='Y *y (l)t

t t identically distributed, but not necessarily

with Y. 1 .1 pei iodic fuc i11 r iv'ei h% Gaussian 4 1 p. 126). Based upon the previous

result, Fisher derived the exact distribution for

K the test of the largest peak of th. Periohoa.

k. 2. R k  cosi k k2) i.e.

max IA
where P" +k and 1, are the amplitude, frequencv ,.( lJi<[N/2l

and phase of the harmonic process Y Z is an

addit ivye :s'o process which is indepen(et with y

,1,OT i / i: i whi t, (Gaussian process., vrious aithors Thi s test is uniformly ost powerful s- u, the
Sal ternat ive is K I ( 1 " p. 12 4)

.. ';( , icussed how to detect the harmonic

In i;, pp i, t ion' of nr1in.'I-li , 'hen ht e noise process is linear which his the

it o CrI I,, oN -;> pro I Ins , 4 I he bform givien in 13) with the condition'; th 1.

.i o:' . 'I Ii 0i 1nd 2 1- thlt he power spt T: Iuo. of

i / - 3 p : od .! am b iT w I II1 e ' 1! p w Iil

11 w, t T

,' "~ ~ IT.- :': l, ,b , -,1 ' d;.,] '-irh inl 2 ( . . *
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TRANSIENT SIGNAL ESTIMATION WIT11
H IGH E R-O RDE R-STATISTICS *

C'iriqo,i K. !'apadopmouo. and C14r ,o~qtorno.4 L. Nikia!

M(I iitu ' ab am!I Digital Signa Pr Icusig (('DSP) Center for Recsearchi and Graduate Studies
NI rt easte n ivi- V

ABSTRACT Him.\ ver. lEncar prediction fails to N%*,rk in tli(, prca-'Ina 'f

Tw' Inelid fQ* the esnMtin of the paranmr' so~ihiai u diltir noWise 5 l.naresaii and Tufts in their
pi, ownerng w "rk A iL mslItratIed pcr rII uanTcCI cIse I o Xii-11 L-xJIIqiititalv dlamipeid siniuoids ar" itiodced b)nSI niuin likelili Ar Io thbe ccotihaiin, of bhe sg~ aal'

, third odclIr stab-tic.. 4 the observation signal. These by utsing tie principl cigenvecors of tbe data niatrix to
inet iIIds :1iav be st-en as extensions of the tiiiuilt niorin separate 'ignal suhspace fril oise subspace in the f' rut
principal eigt-ivect 'rs miethod (Knninaresan-Tufts) a, higher 4f singular value dec tlip''.iio and the backward linear
,'rlcr stiti~tics iooii. The strong points and lintutatlions pri-loti eqtitiolS "f t li iisv oblse'rvations~ of J(7) 1
4 tl( heic'w tixet hILb are Listili5L'(. as Wvell as suffcient con. 4
Vilm han.- f' r 4xseneo their soutions. The utilizatifof If thec signals are ste'ady-state sirnisoid, ill addcitive
tlie~c nilthol, Ii the case of finite .enigth signals in the cI b14red Gattsian noise. pn('vi ni. wo-rk asbased oin ilk
presenice of additive Gaussian n ,ise (white o)r colored)is itig -pecific assumiptions a,,ut the tnoise. Iti 6 the c- .1
aildre scdl. Monte-Carl, sitnilations deiinotistrate theL e- Ired tiose as represented a, aI first-order allt regressix-,
fictirine if4 the ntit' nth.ILds whetn the additive tilise is ( AR 1) Inbudl. The AHO min nisews also analywid it

The.. re as Lu se NiiblL *fuov dat rcrs ist iii .,edcIe 7 using the matrix invl-nsi~ui lenina. The purpose of This
Thecas 4 ;I nsmbl ofdat rc,,ds s sudid wen paper is t" intrnl,(uce ti ('stittitnt prmeedliins for the pa-lie cxj neticiit Ially damrped sinusid" anrL assnl to have\ rmliiLters of tie signal duscribed by (1) based an knowledgeran& an phase. of its highe-r rder 'tiitisics that also wor itn the prenmce

of additive Maussian toi ( whit or cI. ril) WAKIti lbe

Ing lecessarv I llake ativ miodl a-siiniptious about tlii

I.~~~~~~~~ aNIO)U O tilisL or eItII ktii 1W it., aiitocorr-liti ii sequienice (~.
1. N'1'RO UCTONspect runm Charaict erist ics)

*1iu1i at t illosirveil signal x-(n can~it be repnL'- The miait in tivatiI,ii beinIi( ite se if higher-order
1i~d1 i 'i-c .. itlli 4f coleilx expionenitial, o)f the fmrl sititsics or cmintluants S In in thi- probletm lies in, their

ablt I suppress t i..e under cert ain ci nditioti. ,withiout
being necessary to know the L-i'ct pr<,paluility dlensity futic

- a h ~ . ' . a It 1........(Ii tion (p.) governing the tiois e samples. For example, iii

the ciie "-here the addit ive to ie has Gaussiati prif.. then
all its cuittulanis If on

1
. r greater than t%%WI are idenitical tII

zen,. rhiefI ire. if the sigiial has non- iero bispect ruin'
-- ':11- lii ' n~ilx Iti~titi un lehll-I a'trispeetruin 8 13 .then there inight lie a clear adlvantage

o.' uiig thid-ordr or folirtli-lurder cui~iinnts itistead of

The Jiaper is olrgaizedL ias folos. Iti section 11. the
I, c,, - jii,,. I,-, - Ii.% l i tl ls are dernivedl baisedl on hiiglir-Iorder statistics5

fIr ti- l"tituiltit lif the Jlaritlilers l-f clti~thlx (damiped si-

ft 'Ic roth/ 5iviiil. riI"p I-e i( 1%. its di ii ac tor is aire ell-arl- I-staihhshcdu. -Section III ll ,,,'. aplp)ilati'lt .If
-' " i an f:,-qItiet-i tht,,. tle l t ,-t I tI the cilsl IIf finlite letiL'l; and tilis% data.

The pr,,l IIfetiit i'sitimmc the partiiOI-ter 'If the a
1

'-- Sipluaulli, i iX;'Itlifles iire pire vinte ili seitli.l I\ . fir ad

I - tiixit., iii likIh-li p . %[ L) -- inni -12't Ifthp' pa 16ith laiil'n d i~ , i"slit'. Ill iii s ti''n

I ~iII rtt i'..''ithal ft, III 1_.. L In. TtuE USE OF IfII ER.ORI)ER, ST'ATISTIC'S
con 1. "e :-a- Ifa "WI dIt P~CXjv. Iliiil a hecre its 0u-f FOI{ TRANSIENT S IG NAL USTI NIAT ION

)i- % tik daI 1I~j-r -Ili Ih,- ttthcf Naval Pri ('timq1- the iiluwi FnI u Agnal j ( u girl-i byt (I foWr itit

~~ ysg; Iiip- imitait ri-H Fr tin' 'iguial there c t a iuitpi-



.t ,,f ciiph'x c,,chieii {,,. I 1.2 ..... L} iai. that .

X(Z) _ 1 (z Z fb). (5.2)
[I ., . ,r . , . (2)

tin from 4.4) and (5.2) we iht ain
If we 1:'ltiplv the left and the ri1ht hand e ,,f 4 2) b) '
.1' - l -. ' uf - 1, atid take a -lNll i,,l with rc - cct to, it.i".'"'.T h' ,T - ,, p x ,jullatc), % wcblain the fI~ i g.l r~ ) h, h{e( ' ' : - Ft{ ; ''

third ,qd .r rt.cur.-i 1 ,.qliatiIi I

h,,b. z ..X z) for z (5.3)

- 1 1 ./ ,] u t, 1). (3.1) T r third ,reier illi(, nt Illinatrix R, in (4.3 1"n beI dec. ( III-
po.'d as

R, * .P (6.1)
r Ill 1. w11e, herr

A, ~ .. .4 L \

RI ,! i.I u, (n -,)..r'(o - )..r'(. - 1) (3.2) *WI(6.2)

i T he t rIle t hird Ird'r im,,ielt sequec'e (,f the etiergv sig- A, A, TL
na! J., ?1).

Si ,ppo,,t hat wNe ,w fi-rin the litcar s steil (of equa- 1 II . Il'
, - 1 1" 2 .... ITR,. 0 (4.1) p.(63

a , uI1, 1 ... a K - 1) x 1. (4.2)

A I.. . )2 - A(m .r)(2 b( i.n )).
K 1 2 LfL - Iand R i, a Harik.! matrix (K 1) f6--b L4

0 r - )/2 f 1 1, L lr (6.4)

and 6(m,r) is the 2 -- d Kronecker delta function.

R( .Since P is a Vandcrmode matrix and bi - bq / b, - b,

R hI.i( .K. 1) v1.q, r,n. it has full rankL L(L 1)/2 (< K). Matrix

R, 1. . (4.3) * will have full rank L if all .4. 1.2 ... L are non-
" zero: i.e.. A(rn. v) , 0 V ren, 1, L. Hence R. has rank

R, (K.K R,(2K. 2K) L. Since vector a in (4.1) belongs to the null space of
R, (K > L), then 1'.2,

L ' 11i also, dcfin'
. aV(, 0 1 < o.r< L.

(7)
(I . 6 . W, This means that L . 1/2. L(L -1) zeros of the Kth orderA-t(II. bib loh,, '. I (1 (" " : } (4.4)N. " (.4 polynonial .A(z) are located at ( (,'-b:, 1 < L,

I which are outside the unit circle. Q .E.D.

1 ] 2. L. 1.2.. . (m.) .4('. n) We now examine the conditions that the signal r(n)
in (1) should satisfy. so that .4(e. r) in (4.4) ,,r (5.3) are

Lemma 1: Assumning that we knrl the trile third-order nonzero for all n. i 1. L . The conditil ns are based on
Illtents 4f the signal x(n) ;n (1) arid if .4)r.r) / 0 a theorem (If complex polynomials that can be found in
I.. F r- 1.L andI b, q ' b,. - I,, 1, q.rn. then for Mardct 14, pp. 30 31 .
evcrv vector a such that (4.1) and (4.3) h,,ts and K > Lemma 2: If the complex tlnimbers III of X(z) in (5.2) are

1 2 L(L - )ih polvlv tlial At(z) , (1h I z ' has sm011 that

L 1 2-L' I ) roots it, ). 1 -. L4-/ . L
Proof: Subtitutiung)( Ii ll,, (3.2) for I K. K . 1. 2K p ". (rg A , • ' . " < . 1,2. L (8)
and . .. K in th, fIrm ,f (4.11. we ,lbitali for each and C is a circle of radius r which enclhses all the poles
l,.:,, ,f R, t, ,. I 1,2 ..... L ,,f X(z). then .X(z) / 0 at any point

S",tside a circle (of radius R r -c.,c(p 2), where O 7n

R?, 1 7. 7 - N .. The cIro liti,,n is ,,ly slifhicinlt aInt] it:. ;'r,,f is given in
., ,,t.... I14 . The par-al,.ter c~rrcsp( aidsItlh,,slp ,.ad,,ft heini

I tial phases of tlr c,,mphex damnped ,illlsfids. If v,' aI~f, v

N " -I PT. r I 
' -' " ' (5.1) l.'mit a 21 ,n .4) no. r) ill (5.3). WI , sv I hat Ile lit, ,(lmp c'x iii1n

iois " - 1( , , I. I . r- I. L sh , , ld be ,itsidc a circle If
iI radiu ,. R Ic)s ( O2). w h 'er, C, 7 1 I{ C 2 .. 'L}

".}1,'r," -If m,,. , giltvi 1,\ 1.4 , INi' if we df!i,I ( ) As i...



~9 ) Thus. P has fuill rank L L( K) and 4P will lie fuill rank
2L if A, ( 1. Hence. the mat rix R, in (1 1ha- rank L

"r and the Kth order polIva irnial A(- ) will have L r-its at I()-
- I9.) Catins . 1 1.2..L which are out.\ide the unilt cir-

Ht-nce, if (9-1 I'S toisbcd tht-n _4(yii.r( L 1L clec. Q. E. D
Wte see thait Slifihcicixt ii'nditii n (9.2 ilepeild u~pt'n the' If we nvpplY Lenita 2 in (12.2) and (12.3) we oltainl

iiuiiiili vauee ~ ~} danput. iiflijeits p)the fo)lliwitig Sufflicient coroliti oin fir .4) 1) , .1
the Spread of Initial phases .Foor examipl if ( t it.

Th s l ()and t hios .40nt. I-) .' UI : n 7uv: , L . 0 7 2 ,i :;o - (13.1)

Lemma 3: If the Signal .r(nu in (1) ci'rrespoiudS too th-
iinilse respo nse - a linear tirue- iti varianit a iti,.rcgrcssi ye where -, is sun that
(AR)I i del dcrrhed hIY

1, 1 g 11i '_i_ a y 11 1'.' < 11' (13.2)

.e. -'x corresponds ti, thle Spreadl of init ial pihasies ,,,
then Ai:) Ufor U < z x. Ciseqtientlv. A4(rn. ) fur 1, 1.2... Lanid ti I .2 .. r
01 -. in, 1r 1. L - Fhe pi otff fthis lemmina is Straight forward.

Instead of using in (4.11 the inatrix R, defined hY The Extraneous Zeros W,, deal here with the loa
(4.31. wve uSe tin I if the reinaining K L zen is oif the Kill ,rder polv-_

nornial *
4 (zv. Recall that L 1 2 -L( L -1) or L L.

R(K )Also . we a su rue that het t re t lird - rder in'iiiewts of t he
R;(A.Signal J-(7 ) are, available.

R, )Lemma 5 1121: The extratieiis K L zeros of A(z)
lie inside the uniit circle if the fllo1wing c(nditiiins are sat-

R K i ... R;( 2K. 2Kisfied: (1) a is the iiiunuuii norni soliitio -of the linear
(111) svsteiti -f eipitti,)ns (4.1). (4.3) .or (4.1),(11.1 and (2)

and (le.Fine( K - L.
Equiation (4.1 ) w dln thet entries (of R, givetn b% R,( r. T)

I. L. ic R,( 7'. Tt -r 7 > 6I suiggests t hat a is an vtgeiivecti ir
A A ,,, i,. 11 f the third-ordi r tnIDrierrt iatix. c, rrespi rditig I,.ivzro

A4 (1 ____ ... (, I. L ('igenivalue. However, this cli ice does to pri aide uis with
any ireans of idenitifyving thle signal zcris fri iii the rest (of

121 the rits of the polvuinmiiial A( z) . We ulse ititad the
Lemma 4: .Xssunntg that wec kniows the trime t hird-i rder u1iiiiuin irin soluition ( the p)rif of Lenimmiia 5 can he
turimnents of the signal r( u ) in (1) and if A(1) i 0 .-. find in 1 . 2 ) hiv choosimig a i'icli that:
hen for everyv vector a suich that (4.1 (and (11.1 ) hold and

K_> L. thle poidvnomial .4(z) V A K : has
a K a L 1 a n 1, i

riiit ,t at f 1 1, 2. L. 2.1 ii 1 2 a. IS IIIII 111

Proof: Suihstituting (11) into, (3.2) fur I o. 1,.- K
and i 0.1..K. wve iiobtain for each elemient of R,. in The eXteTIiisiii olf this analyNsis to tie foiirth- ,rder coi-

(11.1 j munlat daI.,i discussed ill 15

- L

/~ .7 o f '(d III. FINITE LENGTH AND NOISY DATA

1.~~,, Conisidler t lie signtal J'(71i) beinig idiServeCdil iaidditive

)o .4(1( J' (12.1) noise. Sii that

whe'. A4i )is given Iv 11.2 I. If we de(fline
where the nioise a(. }is assum11ed ,eoma.ci ii icd 4or

L I white compihlex Gauissian process. wvithI real amid itnngiriarv
IL> . A,,, ,. ( 6' i,, to 12.2) parts independent antid iilenticallr dist ribit ed. inidependenit

S iof the Signal. Fir the alhive n"iisy olit pit y(rl) it is trule
that

huni i 1 2) I 1cco tu s

.lI~ /i~.V'zu fu T) R12.3 75 - 7) Ro J,(T. ,.,, r
(1 . )2r,, (7) . ' . ,~ ( i) 2r-,( ) -' ii. (151)

[it,- na1;tri.: It, iii 1.11 ni r ii Il i i;nv- aS (6.1
ir3 3, V'ith III-Iv if-eiIlnix. that he

L L

ai'.(11nd T)"T ui~ Ai .- ) X*~ ( T) 0l'.2)

'V fr 1 1.2...! (1)'



PI , WCIanMi t lit- -; xii'ai(t nc f t1 lit-' il imIt I maginary part s
j j t1- ic pr it s, is I. HIt' Illi~ I jl1)r- wt't' I is , teictri ted li

th lit 2W\ G .G IL )rtittIni i of I It' I\1S LI il)I rv%. hig. I simis
Iht Il. t irim I rtI siginal /,-r(s , bt aijicil wit ]I f- t %, intlepenl

N 7 2'Ii7' 1 tI .4) dltit iiscI itits. Ili cach run Ilt' tranisiett signtl wits kept
tlt-i it'l. Sta1titicallY inli'itt'iiltnt ntis. rlli/aitt, were

IF 11 ~ l Il 'I .tilit 11 cc' f IbeI slLlltl. iil addedc~ ilslng dlifferent sctils . Tilt' filter lIvngt l was cifsen
too Ill, K 9. Frliin fig.] (a) andl (1)), it at'rsthat

1 it It-r 7 it- it -T 15 ;. 5 til' ilgili iler st ahtists IlSitcthud Ilas cliilitirative
iterfttriiiatct wvith tit(- KT aI igtritit. Fiirthilritiri' thle

Iit-( it w10711 7'. ~ 116 TOMl) sersill ;tlluttils It p~rfirmi u thlan tilt-' F00')

-ofsi In lit hi' liitr t.rtitr Ittit.til's itasi lt? t.

ttpi-iitlicioitmiI fir the oiilittatiiilf oftlii' bis lni stanl

r!;tPI ,(l,:,- ,fI' ft it ii w( i- i )I . .1' .1' II' w I' aret fn'yi ics (itt',). Fig.2( a) (dJ) slittws thi' sainplt' stati

>7.R> 0l .( 'ieI ~ U. AMs. slt't'C uimlping fwittits (0.2.0(.1), rvspe-ctivt'l. as finlctiltils Ifthe

IIIf.ll.11 v uI;, I j I 1ilis. if wi' sibillct tilt' S N R K 18. N 25 for KT anti K 9 . N 64 for
f!. Il 'i I l'l -1 ;It II iial q) to i. ite aititcit'ilatii~il iT )'\ and( F( W( ).TircsllIit potint I wtcuirrt'd wxvht tither

it 11 11.t 1-,-I' 11 .... it , 1 5 pa l Iti il I?I,( 7. 7 ). llcc tilt' titlist' the btias wits ht large (t'stit ati-tl mean iltjt 70( 1 of fih'
I ,If ], /i I , uIt;ti. tllit' ult-iri' itil ,i if tii siguill It-s trnt' value) (or it lirtak wa-;s ,Itiserve(I iii ithe stitillirtl (Ievitt

1- -Il~LI( tilt l.iptiit, H~j r VlHicrt'firt ililclr thim if tit estituati's.Tle fre-qtii'zii's ;tnii (Laimpinlg factirs
aF ("It 'iiiate(A fromii thle 1)ttles itsidet tihe uinit cinch'- iiIh

Z phlie.

B. Additive Colored Gaussian Noise

if'~, ll-~t I(!) t'. 0w- (Ilal s\'tt-In iftuiail gv'il Wv cotisiulcn atltiitive cidttrt'tl nitise that Is get tratedi
lx .1 ii- ,til;.ji~ 1))' Iassitig a itiiilxwhite Gauisialljrlc tllntiigh hin

It. a ) 0 FJIR fiter w~ith iiiptilse respinusi t'l(fit'tit't'iIts

Hit'I,, i l), lotnk- iiatrix of (41.3). .5,.6. .7,.8. . 7,.6,.5. .0, .0t,.5..6,. 7, .8. .7. .6. .5

111'Ti, lt, , it t "lk(hla m - Ivalallc c 1'e tit, sit signal ais tha b lt itstrilted lI)\ ( 18). Thet'Nltinte C rl rt
V;I (I'' (iif C41lliti -Il tinli'0 Lt-t ~ Ill I~v 41 silts (if this expeorimiiit art' illustrated( ii F igiiri> (3) (4).

h(tt- . ( j--n Illt' t 0 . '11, i. l - I ' Ifle .

llll~w 141'lit' ;1%(t~ Tap tt1ui. V1. COMPLEX D)AMPED SINUSOIDS WITH
>f-ti ii-f 0w lth tlrti itr~lr riltlitls RANDOM 11hASE

A' K I ltri oo t fl li] ll't. att crl ilq I, h-i(g.i )1I1) Exactly K nowat Iligher-Order Statistics Tran
t't ranlk 4 ill Ilt1x en -rt si gnials d' cseri bedl 1)y equat if ii (1I) cati bt- eithIer de-

t"in i rik tmt~ r, tp3 lit'ut tiix tt't'iisti(' tr sttttllastic. Wei assitnic in this sectittnl that
Isti'flt r i tsit'ifrl ( tj 17. t9i lillii thart, }u rantiltiin variabiles iiidepenutlent atridI iinifti-riii1v (is

illI it If 1I t .( rut t'I Cr 7T 7rn Tihe luneai' si tin (of 'qtiitittns

IV. SIMULJIATIION EXAMPLES i

o-~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ 1,11 1II tIr1ruIlt-Iwf u c fhge o



where 13 (.K. Papadopodees and C.L Nikia',.p-r~x
titation (if transient signals*', in Pre ' 1ISSI' 8S.
New. York, April 1988, pp. 2404 24(17.

A4 t) 12 (d i 4c, 2 \ 1 21 -144pre, ener'o'neoiials. Pro vide'nceRH h'de

13Island: American MathIemnat ical S o'jet v. 1966.
k 15 C.K. Papadopoulo, and C.L Nikias,.Parameter e'stt

201) nation of exponentiallY damtpedl sinusoids using higher
order-statistics". IEEE Tran., Acoeest. Speech. Signal

N\otice that in this case .40 - 0 vi z 1. L and Lemma 4 Processing inl review% 1989.
can be applied :nodti al.5, .~-

Finite Length and Noisy Data The treatment of
this case is exactlY the sanme as for the deterministic tran- -

sients with the c:1ll difference' that the fonrthi- order rno-
ment sequence is defined now by (19.2). The fourth-order
cutnulant sequence along the di ag hal line T ' 0 for zero
mean signald and a clse- is given byv 13

C Uree( - T,- 7, 2R;( 7'. T, 7)( (21) _

where R,( -_ 7. T) is givenl hv ( 19.2) .
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DETECTION OF A NON-GAUSSIAN SIGNAL IN GAUSSIAN NOISE

USING HIGH-ORDER SPECTRAL ANALYSIS

by

DORON KLETTER and HAGIT MESSER

Faculty of Engi~ oring, Department of Electronic Systems,

Tel-Aviv University, Tel-Aviv, Israei 69978

A BSTR ACT The signal and noise processes are assumed to be statistically inde-
pendent, with the result that in the power spectrum domain we

The most general solution to the cl, sical problem of detecting have
a random signal in additise noise is known to be achieved by per-
forming a likelihood ratio test (LRT) on the received data. When fH1  Sx(w) = SS(w) + SN M
the signal and noise prccesses are both (stationary) Gaussian, the H, Sx(W) SN(w) (3)
LRT processor is the simple, well-known, power spectrum based
detector. V ,ith a non-Gaussian signal, howe,,er, the LRT processor where Sx(w) is the spectral density function of the received signal.
becomes extremely complex and therefore is rarely considered to Examining eq. (3), it is clear that for low SNR (i.e. SS(w) <<
be a practical solution. SN(W) ) the received spectrum in nearly the same under both
In this paper we propose the use of higher-order spectra (HOS) hypotheses. Hence, energy detection at !cw SNR's becomes
for impro, ing (relatise to the power spectrum detector) the detec- extremely difficult for finite observation times. In the bispectrun
tion performance in the general non-Gaussian case. The idea is to domain, on the other hand, the Gaussianity of the noise immedi-
also detect the high order spectral content of the received signal ately implies that BN(Wu, w2 ) 0 for every (w1.w2) pair, or
(HOS d;,nain dcscctio,. Under the assumption that the additive
noise is Gaussian, the presence of such high HOS content would fH,: Bx(ws,wz) = Bs(w,,w2)
clearly indicate that a signal is present. The resulting processor Ho Bx(wiwz) 0 v W~W 2  (4)
consists of the HOS doinain detector in parallel with the conven-

tional power spectrum detector. The final decision whether the where Bx(w,,w,) and Bs(wjw 2) are the bispectral density func-
signal is present or not is based on all detectors outputs. tions of x(t) and s(t) respectively. Comparing (4) with (3), it is
The new method is demonstrated usirg the third-order spectra clear that the bispectrum domain detection might perform much
(called bispectrum), although it can be extended to higher order better than the energy detection (especially in the interesting case
analysis (e.g.- trispectrum, etc.). The performance of the above of low SNR), provided that the signal contains a significant
processor is analyzed, and it is shown that it always performs at amount of (third-order) non-Gaussian information.
least as well as the conventional power spectrum detector. Under In reality, however, all the above spectral/bispectral density func-
certain conditions on the signal, it can also have a significantly tions are generally unknown, and therefore must first be estimated
better performance. The resulting performance improvement is from the data. The estimation errors, which always exist for finite
most impressive in detecting non-Gaussian weak signals in a SNR's and observation times, are greatly influenced by the
heavy noise environment. Such improvement is analytically dem- amount of noise present.
onstrated for a spectrally and bispectrally flat bandlimited signal.

1I. DETECTOR STRUCTURE
1. INTRODUCTION AND PROBLEM FORMULATION

The proposed detector is shown in figure 1. It consists of two
Let (x(ti) , i--,1,...,N-I be a sequence of N consecutive mea- parallel channels; The upper channel is the conventional power
surements from the (real valued) received process. Consider the spectrum (energy based) detector, and the lower channel is the.
following binary hypothesis problem, in which the signal s(t) may, (third-order) HOS domain detector. In both cases the appropriate
or may nut, be present spectral density function (i.e. power spectrum or bispectrum) is

first estimated from the data using conventional (high-order)f1, x(t i ) s(ti) + n(t i ) spectral estimation techniques. The estimated spectrum is then
lito  x(t i ) n(t i ) = 0,1.N-I (1) used in an optimal generalized likelihood ratio test (GLRT), to in-

dependently detect the signal presence in the corresponding
The noise process n(t) is assumed to be a zero mean stationary domain. Both channels outputs are then fed into a decision block,
Gaussian process, with spectral density function SN(w). The signal in which the final decision (weather the signal is present or not) is
process is assumed to be of zero mean, band limited, and at least taken. The decision block logic is summarized in table I. Usually
sixth-order weakly stationary, with spectral density function the null hypothesis (i.e. signal absent) is accepted only when both
SS(w), dad bispectrum Bs(wl.W2 ). Tha bispectrum of a process channels agree that no signal is present, and it is sufficient that a
x(t) is defined as the (2-D) Fourier transform of the third order signal is detected by one of the channels to eventually icj!,t IHo.
cumulant function C,(tt 2l) Table I also includes the meaning of each one of th- four possible

cases. This additional information can be used for identifying the
B x(w1,w2) = F ( Cx(t 1 t) = F ( E f x(t)x(t- t)x(t-t2 ) ) (2) signal type. For example, if detection is only aimed at non-zero

bispectrum signals (e.g. in an act;- ..-- "ml. the,, -,ther
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(disturbing) Gaussian sources can be prevented from causing tests H10 : 1 = 0 against the alternative H, : M* E1 > 0. The
unnecessary false-alarms. This is achieved by simply changing the - -

final decision block logic as indicated by :he note appearing for Generalized Maximum Likelihood (GMI.) ratio test for the above

case 2 in the table problem was analyzed in [61, The test rejects the null hypothesis

The power spectrum detector is optimal for detecting Gaussian if:

signals, and tnerefore it is commonly used and its behavior is well

studyied by now., [e.g. 1l. The ItOS domain detector is relatively z A * '- T
new, and therefore must e further described. It is used, in con- Tc =  

> (8)
junction with the power spectrum detector, for detecting non-
Gaussian signls w'th Pon-zero bispectrum. w'here T' is the extension of the Hotteling T2 statistics to the

c
complex case ,[7], and

Ill. OPTIM-Al. ), tIE(lION IN THE BISPFCTRUM DOMAIN
KL 2

The prblem of etimating the bispectrum of a random process A _ (9)
was alread considered in great detail by many authors [e.g. -=

1-5, 8, 11. An ai mptoticalls (i e. for large N) unbiased and con- n=I
sistent estimator (,f the bispectrum can be constructed using the KL I ...... !(. ,j, , (0)

........ K B.- B. P

Kl.2 n= I

Bx i. .. I,. = jKL > Xk(1)m ) Xk(wn) X k( m+n) (5) are the ML estimates of the mean and covariance matrix, respec-

k=l tively. T o is the threshold with its value set according to the
desired false alarm probability (significance level). Since the

where K is the number of disjointed segments (records) to which matrix E tends to be asymptotically diagonal, eq. (9) can be

the data is divided, and L2 is the numner of adjaceil (2-D) fre- further simplified, although at the expense of a larger number of

quency-pairs in which a uniform smoothing is done (assuming measirments, (15], to

that the bispectrum is effectively constant in the averaged region).
Xk (,,,m ) is the DFT coefficient of the received signal in the k-th2 P _ H,
segment, and at frequency .)m=21rm'N , m0,....N-. It is also =c Y >< To (11)
desirable to set X(0)=0, [1]. The averaging operation does indeed - H,
,-uuce mhe variaiie, out it may also introduce bias, and therefore p=l p

care should be taken when choosing the the proper values of K
and L, [12]. For large N, the complex random variable with pp being the single element in A , and oa being its corres-

Bx(.Jm m, n) i;s approximately complex Gaussian, with mean
Hx(u:'m,,)n) and variance: ponding diagonal element in E

Var{Re( Bx(a~m~wn)]}T Var~lm(Bx(wlm~wn)3} IV. DETECTOR PERFORMANCEN

KL Sx(wm)Sx(wn)Sx(wm+wn) (6) The detection performance depends on the type of decision criter-

ion selected. For the two criteria of most interest, the Bayes and
the Neyman-Pearson, the optimum test is the likelihood ratio test.

and the asymptotic covariance between the real and imaginary It can be shown that the proposed detector performs at least as
pa~ts approaches zero, as is the covariance between the different wl stecnetoa oe pcrmdtcowihi pi

freqencis, (,cha.4 21.well as the conventional power spectrum detector, which is opti-

frequencies, y5chap.4 ;2]. mal for detecting Gaussian signals, [15]. For non-Gaussian signals,

Suppose that there is a total of P bispectrum frequency-pairs a considerable performance improvement is possible, provided that

inside the bispectrum principal domain. Fore a e re- the signal coatains a sufficient amount of (third-order) HOS con-
quency points in the bispectrum domain, there are approximately tent to overcome the bispectrum estimation errors caused by the
P = N2!/12L_2 pair-points inside the principal domain, [131. Each noise. The proposed detector is therefore modular, since it can
point is estimated u.s1g KL

2 observations. Collecting all the bis- always be used for any signal type (i.e. Gaussian or not). Each

pectrum estimates into a single vector, and changing indexing one of the two channels is asymptotically optimal in its domain,
(m, n)-.p : and it can also be shown that it is uniformly most powerful in a

certain sense, (151.

,t , 
The performance improvement is achieved by using the HOS

B B) where Bp Bx(wmwn (7) domain. Under the simplified conditions of eq. (II), the detectionprobability in the bispectrum domain is found to be approximately:

Ihen. following the previous section, the vector B is complex- r a
normal, with mean ki (the true bispectrum), and covariance matrix PD erf T - 2P- (12)

F (assumed lermitian positive definite matrix).
It is obvious that if the null hypothesis is true (i.e. no signal) then
A _ 0 for any frequencv-pair. Under the alternative (HI ), on the ,o
other hand, we have assumed that there are some frequency-pairs where erf(x) f V2, eI x dx is the error function. 12

m.~n for which p * 0. therefore the bispectrum domain det- x

ectin is equivalent to a binary hypothesis testing problem, which is the threshold (set by the desired false-alarm probability), and
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Decision block logic.

signal oresent in I final
case spectral bispectral meaning decision

detector Idetector decision

both channels see no signal
1 false false sigili absent

no bispectral content, signal
2 true false decision Is energy based present *

low signal energy (low SNR signal
3 false true but high bispectral content present

both channels agree - signal
4 true true signal is present present

*Unless detection is aimed at non-zero bispectrum signal only
If so - decide signal absent.

PD

Ficure 3: Detection probability vs. observation
time (in samples), as a function of B.
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[herefore, in order to achies e 'igh detection probability, it is [ he sUegeSied meihod Of detection is simple to implement, andi
required that requires no further asum pt ions on the underis ing model d ris ing

A 2 P + A- Tthe inal. It is especialls useful for detecting non-Gaussian w4eak
K D) >> 1- - (14) signals in a heass noise ens irojiment. Aishough generoa~l sub-

2 ,'P+A optimal, the suggested met hod mnay Neld significant performance
Note that the detection probability is a monotonically increasing improsement 05cr the commronly used, energN based, detection
fu-ct~cn of the expression: miet hi. The proposed method is not exhaustis e. though, since

A 2Ps3 IS man% non -Gau.Lssian signals mia% hase a zero bispectrum leg., all
P P= symnetricalls distributed signals,. Nesertheless. there are nianN

practical cases for swhich this detection scheme sems to . quite
v. hich can be considered as an equisalent S\R. -The detection attracti %e.
probal-ili is is theretore a ft nction of the sounmation os er all1 the
true bicoherence ns,ign itUde-squared freqUecc pairs inside the
bispectrum principal domain. -The bicoherence function, or skew- REI LRILN(ES
ness function, is de'fine'd in [ IlI to be:

[ irillinger. D.R. 10956) "An lntroduciion to Pols~pectra".

[I,( Im -n (16, 2 Ann. Math. Staitist Vocl 16, p 135I - 1 1-4

F S xl (I III S n ISi msrn *Ii 2 1 heors of Est, mites of k -t h Order Spectra'. In Spectral
ILK I -X ~~nal s is if 'Timre SYe ries. HI I lrr is e'd. 'A ile % p I 1 5- 188,

II[ Van Ness. JlW. ( 1900) ".'svmptotic Normnalits of Iiispectral
Note In the Nes man-Person test the saluc _ the threshold isEstimates". A\nn %lath. Statist., Vol . T p. 12>12

d e te r m in e d b t h e f a ls e -a la r m p r o b a b ilit , a n d it is g i e n b y [ 1 5 1: [4 ] R os e nb la t t, % 1 . a d % t n N e ss , J '. 4 1 6 5 ) " E s tim a t io n (of

[51 Brillinger, l).R. (19811 'time Series. Dita ..nalssis and
Theory", Halt, Rinehart and Wkinston. Expanded ed.

V. N\ SPECTR \I.EY BISPEC'IR AIAY 'MU IE' SIGNAl [6[ Gin., N. I 1(651 "On the Complex Analoigues of 12 and R
Tests", Ann. Mlath, statist. 36, p 664-670.

Suppose that the signal sequence consists of independently, identi- [7[ Anderson, 1WA. 119581 "An Introductio~n to %Mulisariate
callk distributed randorn %ariables. w ith zero mean and: Statistical Analssis", Wiles.

[8] Iii, K.S. and Ilelland. K .N. I 19811 "C ross-Bispectrumn
flS) ti IS)ti r)) = SA Mr) Computation and Variance Estimatiion" ACM' Trans. on

SESifti )S(t-76ti~pil = 1), slrl(P) (18) Mlath. Soft. ,Vol. 7, No. 3, Sept. 198). p 284-294
19] Kendall, M.G. and Stuart, A. (1958) "'[he Ads inced

The noise process is zero mean white Gausian. wsith spectral den - Theors of Statistics", Vol. 1. 'srd ed., Ilafner NN.
si ts \l.= and bandlimited up to aI frequencs Wk (ie. [101 Van Trees, HEL. I 19691,'lX'tec:tion. Modulation and Esti-

I PNW . or this example we finid that the bispectrumn mation TheorN", Vol. I and Ill, WAiley.
donman test (eq.) lbI is gisen b.s 11[11 Nikias. ('.1. and Raghus eer, NI.R. "Bispectrum Estimnation

A\ Digital Signal Processing Frime~kork" (1 987). Proc. of
I 2' Wm~.nii~ 19)the [EEE, Vol. 75. No. 7. Jul\ 1987. p. 869-9892, (plus

c references therein).
xrn , I 121 Subba Rao, T'. & NINI. (;aher 1980l1 "A IVest for I-inear-

its' of Stationars '[ime Series". J. 'I Ime Se ries A\natl IllI , p
,A here 13 (1i,'~ is the estimated bicoherence function, obtained 145-158.
t-, rtoplacing the true spectrum bispectrum in 1 16) with their esti- [131 [linich, %I J. 11981) "*Testing for Giaussianits and Inmearits
Mates. The conditii'n KD ~ I which assures high detection pro- of' a Stationars 'I mre Series", J. lime Series A\nal SI(q p
bability is frouin to be equisaient to, [151 169- 176.

[14[ Cramer, II ( 1951 ). "Nlathemnatical MiethodT' Of Statistics"

I bl > _1 (S,+ N,,)3/ (201 Princeton Tim. Press, chap. 20.
SINK [151 K letter, D). & WNser, H1 (19881 "Sub-optimal Detection of'

a non-aussian Signal b% the Ifigher-Order Spectral Ana-
w~here NK is just the total number of asailable measurements in Issis", Submitted for publication in the If I Trans. on
all the records. '!-,m (201 we conclude that the bispectrum detec- Acoust., Speech, and Signal Processing.
tiion technique can be used =-..c'ver there is enough hispectral
c ontent in the signal to osercome the bispectrum estimation errors
c~iiised bs the energs sariance.
In figiire 3 we base plotted detection proibability sersum the time-
Viol s. kiith product. for diifferent s alues of bispectral level. The
SN R xais helid constant at fy ob. )Ihe los~est cur se. marked 13=Ci, is
c'iputed u'.ing the fanmiliar Gauss ian hound
110.%I Ill p1 10-11ll1, and the three other curses indicate the his-
petriim iletvection performance I'or increasing signal bispectral
Ii'',')I The impros ement is clearly noticeable.
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constraints are applied, such separations reduce, on a 3*3 support, to the following
possible distancos (naming codes in parentheses): zero (0), one (T) or two (U) step
transversal, one (C) or two (E) step diagonal, oblique (F). By this notation, each 4th-
order moment will be indicated by a triplet of distances between the first (reference)
point and the others; e.o.:

Etx3 x6x8 x9 ] = Etxlx 4 x6 x7l = m4 (TFU).

It is interesting to analyze the filters of the bank (2) from this point of view.
Simple mathematical manipulations show that the output power of each operator can be
expressed as follows:

E[yl12 ] = 9m 4 (000)+24m 4 (OTT)+12m4 (OUU)+6m4 (ODD)+4m4 (OEE)+16m4 (OFF)

E[Y122 ] = 20m 4 (OTT)+20m: (TTU)+44m4 (TTD)+18m4 (TUF)+26m4 (TDF)+12m4 (TEF)+4m4 (TFF)
2

E[y 1 5-] = 8m4 (0U'J)+14m 4 (TUF)+l0m4 (UUE)+2m 4 (UDD)+'.m4 (UFF) (5)
ETY 1 5 ] - 12m 4 (0DD)+12m,(TTD)+16m4 (TDF)+16m4 (UDD)+4m4 (DDE)+4m4 (DFF)

ELy 1 6 -J = 14m 4 (OFF)+14m 4 (TUF)+4m 4 (TDF)+12m4 (TEF)+2m4 (UFF) 8m4 (DFF)

E[Yl9
i] = 2m4 (OEE)+2m 4 (UUU)

The set (5) precisely relates, as anticipated above, the output power from a filter of
the bank (2) with the estimate of some fourth-order momer - Similar relationships are
of course valid for the operators (3).

A relevant problem which must now be considered is the stability of the measure of
the m(---)'s. In fact, many 4th-order cross moments suffer from the fact that an image
signal can scarcely be considered as stationary, and their estimation is instable (i.e.,
when trying to measure them locally, ve'y difierent values are obtained in different
image zones). Trials on different images indicate that the most stable moments are the
"slice" ones, and in particular m 4 (000) and the m4 (Oxx)'s; this is why more attention
has been paid to the first filter of the bank, the output power of which is a combina-
tion of these moments. To exploit them, the filters (3) have been devised, which per-
formed well in texture discrimination.

IV - APPLICATIONS

The proposed approach has been applied to texture discrimination using both synthetic
and natural images. The first example of its performance is given in Figs. 1 and 2. The
former shows a concentric composition of two synthetic textures: both are formed by 4*4
pixel patterns with two light gray impulses on a dark gray background, but in one the
impulses are adjacent, while in the other they are at distance two. The textures have
been damaged by multiplicative noise having uniform distribution with variance 0.2 and
mean 1, and possess the same global mean and variance. The latter contains the output
from filter Y1 6 of the bank (2), which gives the most significant results in this cae,
and it indicates that th difference between the two textures have been recognized;
indeed, if we evaluate E[y I for the two components of the output image we obtain clear-
ly different outcomes.

Interesting results have been obtained also in processing real-world images. Fig.3
shows 16 texture images; each of its four parts (a), (b), (c) and (d) is formed by four
samples of the same texture (respectively: THICKET, WALL, TILES, LEATHER). All the
images had been preprocessed with histogram equalization (as described in [5]), so that
they possess the same mean and variance. The other 2nd-order statistics of these images
have been measured, too, and proved to be very similai (when stabale); thus it make sense
trying to extract information from higher-order moments. Of course, these textures
posress some well-recognizable structures, which render their separation easy for the
hutman eye; also an algorithm capable to evidentiate lines or edges could be helpful. Our
method, however, will prove to be capable of discerning them without exploiting such
structures but using only m 4 moments estimation.

The images ha-e been passed through the filter bank (2) and their output power has
bcen etimated. To evaluate the performance in discriminating the textures, a method
prcsentc in [61 has been followed: the 9-points (16*6) scatter plot of the output
powe r, sketched in Fig.4, has been subdivided in six columns, each representing one
filter of the bank In each column, three thresholds have been chosen to separate in the
best possible way the four clastes or textures (which in the plots are grouped and
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indicated by TH, WA, TI, LE). The number of correctly classified samples (over the maxi-
mum of 16) was taken as the score of the given mask. For the six filters (2) the scores
resulted to be, respectively: 11,8,11,12,12,15. It should be observed that a larae part
of the failures come frcm the identification of the texture TILES, which has been in-
serted in the bench mark set as a hard test: it is highly organized (structural rather
than statistical discrimination approaches would better fit) and, due to perspective,
strongly changes from one sample to another (see Fig.2).

Filter (3a) offers more valid results: its scatter plot is presented in Fig.5 and its
score is 14. It clearly appears that the textures are perfectly discerned (again with
the exception of TILES); the results are strictly grouped cor espondingly tc the origi-
nal textures, with the output power ranging in a more than 4-to-l ratio.

V - FUTURE WORK

The study presented in this paper supplies enough material to buiid up a texture
discrimination procedure basing on estimates of higher-order statistical moments. Never-
theless, it is only a first hint on much work which can be developed in this field; at
present, the key points which seem to deserve more research efforts are the following:
i) determining which are the most stable fourth-order moments for a possibly large class
of textured images. To this purpose, the relative stationarity which is intrinsic in a
texture should result helpful;
ii' establishing precise design relations for the quadratic filters which act as estima-
tors of the m4 's; in particular, it would probably be convenient to choose coefficients
able to put to evidence the differences among the moments for the given textures.
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Fig.i Synthetic image composed by two Fig.2 - Same as Fig.1 after processing
concentric noisy textures. with a filter of bank (2).
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Shift and Rotation Invariant Object Reconstruction
Using the Bispectrumn

Brian M.Sadlkr
Dept. of Electrical Engineering

University of Virginia
Charlottesville, VA 2290]

Abstract The triple correlation is invertible; i.e., we can uniquely
reconstruct a two dimensional sequence from its triple

Triple correlations and t heir Fourier t ransfornus, called correlation. The shift ambiguity is removed during re-

bispectra, have properties desirable for image sequence anal- correltion by shifyigty ieod o re -

ysis. Specifically. the triple correlation of a 2-d sequence is construction by specifying the centroid of the object

shift-invariant, it vanishes for a zero-mean colored Gaus- to be at the origin.

sian random field, and can be used to uniquely recover the e The triple correlalion of a random zero-mean Gaussian
original sequence to within a linear phase shift. An FFi- feld is identically zero; a fact which may be exploited

based algorithm for reconstructing a 2-d sequence from its to reduce additive noise effects.
bispectruii is reviewed and tested. The bispectrum is also
applied to estimate a randomly translating and rotating ob- It has been demonstrated in the 1-d case that signifi-
ject from a sequence of noisy images. The technique does cant processing gain may be achieved by utilizing the re-

riot require solution of tile correspondence problem, and is dundancy in tile auto-triple correlation (or equivalently the
insensitive to additive colored Gaussian noise of unknown bispectrum) when reconstructing the original signal [2]. The
spectral denisity. Some simulation results for the random corresponding 2-d algorithm for reconstructing 2-d signals
translation case are presented. consists of calculating the auto-triple correlation of each

frame (or equivalently the bispectrum of each frame), aver-

aging the correlations (bispectra), and then reconstructing
1 Introduction the object from the averaged correlation (bispectrum) [3,4[.

Some investigators in optics, notably Lohmann [5,6],
onsider the problen of rec(onstructing a randoiily rotating have used analysis of continuous deterministic signals with-

and tran.lal iiig object from iiultiplc noisy franies. Typi- out explicitly analyzing the noise effect. Here, discrete anal-
cally. the correspondence between franmes would first be es- ysis is carried out for a deterministic signal in an additive
tablished so that averaging (or other filter fuiction such as random noise field. This approach yields discrete algorithms
ruedianl filtering) caln be applied to yield ail improved es- for implementation, and allows explicit treatment of the ad-
tinate of the object 1]. [An alternative approach which ditive noise, [4]. A moregeneral framework for ARMA mod-
dos [lot require solution of the correspoience problem is eling and phase reconstruction of nultidimensional signals
to transforn the image to a siift-invariant and high SNR from higher-order correlations can be found in [7]. Use of

,iaim iprforrri averagirig or fitenrig i this donaini, arid higher-order statistics for signal detection and classification

hn reconstrruct an enhianced estimate of the object via an is treated in [8].
aippropriate inverse rrannforination. Such a domain is that
of hirer I liar, selond -order (or rueill ions.

In this palper we eflolnn% tiriph cmrr, lations (or their cor- 2 Background
rlmpoilirng, fourivr lransforn.. called 6nstclra ) for recon-

mtrut ain" 1, inag,, of ain ob.ject fron noisy franies. Our lb' t riplecor'elation of a zero-iean 2-d randon field f( n)

niotivation for ,.ing triple correlalions conies from tIhe fol- is (](,id is

Iwing hr,, fats. t:(ni, n 2 ) = l]f(llf(m nl )f(m - n+1 l (1

e 'I he t iiple ,ri lar tioni is shift -invariant.

where E represents the e :pectation operator .. \ natural

esiimator for the triple correlation of a. zero-nal iniage
f (m) defitled by (I) is given by

+0c



Ithat thle lbispectriim (and thle triple correlation) are shift-
0~l1 . 12) = 2Z i)f (i +o -i- )f (m + n2 ). (2) invariant.

~0 Therefore, we may form triple correlations of imiages of

Let o( n) denote a deteriniist ic object in a nioisy .NX N the object, whelre the object may be shifted but is other-
image as wise unchanged, and average t he correlations to reduce the

f,( i) = o(mi) + '(i). 4) additive noise effects. The resulting improved estimate of

whee rm) s azer-man ddiivenoit-proess an su- he t riplle correlat ion of thle object may then be used to

wo here re 1s a romeanhadditde noiese ptess "fane. form anl eSumt-ate of the object. This is possible since the

o'raging estIi niat vs of the triple, correlation for each framle triple cor-relation (or bispect rumn) may be inverted to recover

xiilds thle original signal in amp~litudle aiid phase to wit hin a shi ft
ambiguity. Unlike the a utocorrelat ion. higher-order correla -

I tions preserve p~hase informat ion about the signal. A linear

y'L i 102)= 0:)011-112) + 1 3A11~,11~ 2 ) phase amitibiguity arises in lie triple correlation case dlue to
L Lthe shift- invariance property. As will be seen in the follow-

0(01)]7 -_ I ing dliscuission of reconst ructioni fromn the bispectrurn. thle
slift -invariance of the triple correlation allows us to place

-r i) ~)nt+ n2 ) - r ,) +n± n.,(i + 112)] the cent roid of the reconistructed object at the origin .. Aso.

I Lv lien (lealIinrg withI a sinmgl e fra me. thle origina posit ion of the
+ vmJomo1 + 01 obec ma bercvro iply zero-padding thle original

niage [2]. so t hat after reconist ruction any vphlase aimibigiin

+o(ni0()m + 112) -+ o) n + nf )o(rn + n2)] w11) xill be apparent; i.e.. thle imnage will be circiilarlxy shifted
wvit hin a field of zeros.

'I lie foiurthI t e' in in ( -I) vail' ies (L ie to tie zero- meani of thle
nloise. Simuilarl v, the bhird term inl (4) vaniishies if the object 3 DFT Reconstruction
is zero-iian. III p rac tice( thle miean is s ubt ract1edl before
formng th le stimate ( 2). Sexveral algorithms have beeii reported in [2] for reconst ruict-

Thus. 121 . ing a I -d signal from its higher-order c-orrelat ions, or fronti
the Fourier traiisforms of the higher-order correlatioins. called

IL polysp ci ro. A 2-d FIF1-based recursive algorithlm for recon-
~ Z.f.0j.112) Oz03!111092) +-"- r(n11. 02). () structing the discrete Fourier t ranisforn ( [)FT ) of anl image

fromt its bispect rumi has been developed inl [-i]. and is briefly
For v1,) i zcro-iii'iri colored (Caiisiaii raiidomiifheld. (9]. reviewed here.

Consider a Cartestian sami[led imliage givenI by f( In).
r,,(1 , 12 ) =).(6) Denoting lie 2-d l)FT of thle imiage as I-)k). thle discrs

A\lso. '-1 i) (-ati be noni-( aussiai if it is iid. and nion-skexved bispctiuo of t- imiage is given by,
cc.svniiet ricallv dis tributted). Eqiiatiori (5) states that l'i! 2 (t1( 2 l( 1 ±k) ))

iie average l: ri pIe ( o rela tat ) over ni iilt P Ic recordhs of thle dec-
termniilistic zero-miian object phlis raindomi zer3-tIieaii noise xxhere -denotes comp~lex conjugat ion, and it is assilnied
is equiial tol(1 le triistic trile corruclationl of thie obiject that f(mi) is real %-allied.

plis anl estimate of thle t ripile c-orrelationi of lie noise. III h 'sirig the sub~stituitionis k2 = 0 amid k, ki - k2In (9)

the case- of ad rilit ve col ored ( aussi a niioise thle second term yields

inl (-) vanii'ties as i lie iiihg- of records I. goes to infinlityN. F1 k1 .0) = F1) !1-0! 1 ) 10t)

li rIt Iis( I1r -tu I- i I-( Fl-oI rier t I-iitsforni ( 1) 11-1) of a ii inIla ge and
f (flu; is dheilined its

I <~,i0 1-k1 - k2 .k2 ) = I-)k 1 - k2 ) F(k 2 ) F-(ki I11)

111 l-limiriiatiiig I-(kn) aTnd solving for 1(k1 ) ini (10t) and (ItI

De notig the folii-dimeiicioioil 1)111 of .0i11i 112). as ill

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , (k -f.i) i2, k2) /x io.iox-0tmt (i I)

1 1011. 12) V 1(ui '/'(u2)/' (--01 - 1.12). (s) 31 k 2 k 1 .()~l k!-k) 2

at t- Iuj b~te ti I)I I ofhueruuae [Ill. lpiatioii (12) mla- to-e used recusv to comiijoitc the 2d
(1) ',i (,ii of I)- heI-Io h I[ to fmi~im). *i1) FT 1(k) tronii itIs hispectruIiu Iu ,ki1. k2 ).

"al i( a l I1-moft i f , ohir t.~ i~(l - e r An i ttertiatx3 t cIo (12) is t o Iv r-a ige ( I Il

- J i -t n). %wi (it I llo nii,, , ipt e I ll"' vector thot i - k2 . k2 )
t. uitiuj oii tf lii tii..luoitii iii, (S ) 4--xt-ls I-(k I P kl k2) F____________3



Note that this form does not rely onl the meanl valule of the 12hase shift corresponds to a linear shift of the DFT. Al-
ii iage being. lion-zero. i.e., does niot rely oil F(0) b~eing non- tornatively, it is not true in general that the resulting es-

Teo his is important since noise redutct ion relies oii thle timlates P(O, -'), P( -", 0) and F'( , L-) will be real valued,
assurlpt ion of zero-ileari. In practice the mnean is subt racted as r quired if the resulting reconstructed image is to be real
before ,~t ilnat ilg the hispjeCt rum, valued. The phase correction will ensure that the phase of

[be redundancy in the bispectrurn implies that one or these points will be zero. After (12) or (13) are used to

io(re values for k2 may he allowed for each choice of k1 compute P~(k, 1) the phase corrected DFT is given by

in ( 12) or ( 13). Let k2 C Rk, represent the set of allowable 2k - V 21 N
choices for k2 given k1 . T[le allowable choices are 0 < k < P(k, 1) = F(k, 1) exp[-j -V(-2, 0) - j (0, -)]. (15)

k1 . For k2 = (k_. k..). there are (k-21 + 1)(k 2 2 + 1) - 2

elemenC~ts in Rk1 . since k 2 =0 and k2 = k1 are excluded. Fiiially, 1%,(0) may be set to the mean previously estimated.
Wecan exploit this redundancy inl (12) by averaging over Note also that just as high variance periodogram esti-

Rk1 as mates require smoothing, estimates of the bispectrum also
require smoothing [11). The latter guarantees consistency of

O1k~i X the sample estimates, and may be accomplished by window
(k2 l + 1)(k, 2 + I) weighting the image, or by using a smioothing operation on

F)(k 1 . 0) Fk k)f() (1) the bispectrum such as local averaging.

k~rk l~i- k(2. k2)F(O) 4 Random Translation

yielding an improvedi estimate for F'(k1 ). If a particular The shift-invariance and invertibility of the bispectrum can
choice of k2 produces a zero denominator then that term be exploited when multiple noisy views of a randomly trans-
is excluded from the average. A further reduction in com- lated object are available. Let
plitation of ( 1 ) is possible by considering only those values
of the- bispectrurn inl a single non-redundant region, e.g., us- f(m) = ol(m) + r(mn) (16)
ig die hispectruin synimetry F11(kl.. k2) = F3(k 2. kr). As

a result. half of the allowable values of k2 E Rk, yield re- be an image, where o(m) is the object and n'(m) is an ad-
duridaiit computations in (14). Similar statements are true ditive random Gaussian field independent of o(m) and not
regarding use of (13). .Note that the complex conjugate necessarily white. Let
symmetry of the l)FT niay lie exploited when estimating

F1k., so that only ±+ 2 points of F(k) need be computed fdma) = O(m - MO) + V,(m) (17)
directly.

T[he shift.-invariance of the bispectrum implies that re- be the ih frame, where the object is randomly translated

cotistriict ion is unique to within a lphase ambiguity. Tbis by imi, and vi(ni) represents an independent sample set of

amibiguiity cani be exploited during reconstruction to cen- the noise field u(rm), Let F,(k) be the DFT of the iih frame.

roidl the object at the origin. The ' derivative of the con- SO, that

hio bus FI' irier niaiisforin. evaltiated at the origin, is pro- 3(ik)=Fk1,k2F:k+k)
port ioita to the A- mioment, of the image, (11 .A similar 3 (,12)=Pk)FkF(k+1() 18

'rt Vis ni for lie iscree cas. As resut speify. is thle d iscrete lbispect ruin if the i" frame. Dule to the sit
hgl Itle phia'.o of the( points [-'(0. I1) and l''( 1 0) to be Zero invariance of the bispectruni

%%ill % il it rc',osti it tion suc-liht the object is centroided
a I lii t lie otigill. lTh' tilagriltilil' of 1(t. 1I and f'( 1. 0) an'- 11(1..( ) 0(kl.12) + V',(k1,k 2) (19)
foiund firtm ( 12) or (I 1 usingl aii -t iiiiate of lie mclean for

thi' vale'( of il0). l-olr '-iilpiitIt ioln of aill ot her points of where 0:I(kl. k2 ) is the bispectroutn of t he, object and
/< kI it i-. iijeirt,illt that V(0) H 0i Iol~)ls the adib 11(1(1,.12) is thle bispecnuiii,, Cf the i" samlple set of the

I I',i. it I 'a 'it X I ~ ii iii ftaie l Ic i , noise. I Iil us gio x'ti1 avcaiIa ble fra lw's the bispe't ra are av'-
I ' l 'e Il ii I W Iht itolf b\ It vt gi I i era ged to fotto th lie st lii t e

i I , 11 t 1 I~ I s tl I, i h- ha]" t1 i I, III( i, ll lo I I lI1

liii I] I' 'i I ii I' ft



~- Z ~,( 1 k2  L-..(21) represent regular polar samiples of the i"~ image of an object,
T 1 t,( . 2 .(1 where o(i p. - o,) is the centroided object randomly' rotated

Reco.,tucton f tc ojec cannowbe erfrme byin- by 0,, arid ,(r. 0) represents samples of an additive randlom
Recotingth ru ioii oftruIn .o j c a o i e f r e y i G aussian field. Let 0) represent regular polar sam ples

of the lDlFT of f,(r. o). It is known that F,(,,:. 0) can he
Ehe cont inuous version of this algorithm has lbeen iii0 obtained with the use of Fourier and Ilankel transforms:

lilemrentel op)tically onf ast ronomnical data to remove atnio- e.g.. see [17]. However, it can readily be shown that the
spheric turbulence effects [12,131. It does not require kniowi- bispectruni formed by substituting F,(, 9) into (8) is not
edge of the object translation vector rni. Thus, the biS1)ec- rotation-inivariant. An alternative is to form for each framne
truni technique offers the advantages of eliminating the cor-( At
respondence problem, use of the FF1. and allowing averag- F(k, 1) ~ ~.~~(25)
irig in the bispectrumn-doniain. Use of the Radon t ransformi
has also been suggested for estimating thle bispectrumi of a

ranoin, tansaId object [1.1]. This approach redluces the Substitution of Il(k.1) into (8) reveals that the bispectrumn
radliil tan aeformed with F(k. 1) is rotation- invarianft. The definition ofdimiensionality of the problem hut requires reconstruction t'(k, 1) may be thought of as mapping the polar coordinate
from rojecionssystemi to a Cartesian coordinate system and then taking

the DTFT in the new C'artesian system. Translation in] 0
5 Random Rotation in the new Cartesian system is equivalent to rot ation in the

original p~olar system. In practice (25) is computed using
lii this section it is again assumed th-it multiple noisy views the DFT. Now, rotation corresponds to a circular shift in
of ant object iii ant additive random Gaussian field are avail- the new Cartesian system. Hlowever, ms shown above, tire
able. However, it. is now assumed that the ceritroid of the discrete bispectrum is invariant to a circular shift. In order
object is always at the sarrie fixed location (at the center to avoid any circular shifing in c- which niav occur when
of the framne, say)(. but that the object is randomly rotated inverting thle bispectriiri. it is only iieces.sarv tio zero-lpad
about the ceritroid from frame to frame. It is desired to f( c, ) in the r variable. It is important to note t hat '( k. 1)
reconstruct ther object given L noisy frames. (foes niot represent samples of the Dli' I of thle original ira-

.\ri algorithm for rotation-invariance has been suggested age. but merely exists to transformn the rotation problemi
by Lohmiaiii [ 15]. This algorithrm relies on I1-d Fourier series into an equivalent translation problem.
formned by treatinig constant radius rings in the iniage as pe- After form-ing F . )for each imiage. a bispect ruin-based
riodhic sequences. lin pract ice the Fourier series coeff-icients translat ioni-irvariant algorithlm may be appilied. as p~resentedl
are found using the 1)11. taken around each ring. These in section 4. The bispectra are comiputed for each framne
1)FT' can k,- 7:-1 to form diqcv-pte bi~necti for oPcb ri- froim 1 . I.. I , c2eg'disecrn fond.adte

anid the bispe-t ra can then he averaged over the image set. inverted, yielding an estimate of F) A-. /1). Finiall. (25) is in-
I1 lie dIimienisioniality of tue problem has heen reducedl. but verted to yield ant est imate hr, .
the mi ethIiod leadi s to at ph1 ase c orrespolnden(lce probIIerm be-
tweeii the rings after they are reconistriucted which requires 6 Tr-anslation and Rotation
a soluiiton fromn the IDh'-doiiiaiu.

A newi a Igor it liii i for riotat in-in var i ance is iiow (level - Iii t he p~receding, alIgori thins havye been d esc r ib ed foir recoil-
ood which explo~its the shift-invariance of the bispcctriiiic strireting a translating object anid recuristi-iictirig a rotatinig
Jliis a Igorit hnii relies on thle followitig piroperty of thle d is- object with known cent roid. Ani outcomle of reconistructiing
crefte bispecirtrun givyen by (9). tha h / diseri, bisp rI iii i a tranislat ed object is t hat thle enit rid of thre reconstrmeted

i-arjiit iollli v a crclaye shift of 1t iinoy--donioio s( object is known, andI iii practice is easily p~lacedh at the oni-

qvi( ei.Tii is Ilowli as follows. Let '(i. This suggests ani a Igorith l j15] whereby thle tranis-

(2)lat ion is first. removod byv form inrg the hispect ruin and thlen
111.2) -. 1) 0 10) ). ) ii - ll 2 )).v) ~recorist ructing to remove traiislatioii: followed liva rotation-

1W a ( irl 1ilarl Aiiftirl irTsiin of Ie W A ille X(71) i). invariant algoritlin to arrive at ani est iiate of lie object.

whe-re i )% .I'll~1i1110Nlllrtol b'r'f't Thus, anl algorithm for reco.nstrut ing a raridoiiilv rotaitedl
(111I)C1 t Mthio-Nopralon.Theresecte anil t ranislateid object is as follows:1

):
1

F I 's (If 1021 'I x(111. 712) are reClateil liv [16],

1.Forni thle ispect riri anrl recnit rut for- fac/ fi-ior.
'tA 1.~ ~ ( d ~ t-~2\k, . A-, (23) '1liis results in a series of frameus in which the (ihijeit

lriortin I -2 nt (1) I-Vetktha HC (il(F(I('his~lhas a conimin ieiitroid buit reinuins randioiiilY rotated
t In s e ri ' if g1 1 1 , fl ) 2  I iln it , .I i ) a - ate i sc r eel.e a b o it t h e c e lt r i di .

901 f ija ioli va in btp ct111-a c a.o it il 2 l i .11)ar d lic l

o,'- -~ -z.,) 2( 1. r--'C I fin 1w, It iei-hi 1l s(.(,tiuiii 5, is a ppliil t 0oihilii alli I t 1iln liI

oif the obec t.



,Note that ti( l)ipurpos of' step one is onilv to remiove
the( t ranislatioin amiihguity, andl averaging of bi!5pectra oc-
cu rs on1ly ill ste(p t wo. 'Thiis alIgorithm u is coipotat ion ally
expensive ini that t ie( lhispectruiii is foriuevl twice for each

franie. once dIuring step one(, atnd once during step two. Aliso,

a reconist ruction algorithtii iiiust he applied to each of the
bispec t a found inl step (tile.

7 Simulations

Sinmuilat ion s were per formed to yr ri fY thle recoinst ruect ion al--

gitrit hll of sect ion 3 andt reconst ructionl of a rand~oinly trails-
I aiting ob j ectI p re'set'td ill s'c t ion -1. 1'ign re 1 dlepic ts thle

61i x GiI pixel binary ob ject -C'alvin." Figure 2 dlepicts a re-

con s truct ion from i tie( his pee t ri n of object "Cal vin."' Tilie

2-Il H V of the( ol Ijeet wa found atnd '!Ie mean set to zero.

E-quatini f() asused to comipute the bispectrum, so that
thrcuion of ( 1 3) cou~ld be applied. Averaging wvas per-

formetd whient using (113). Viiiattv, the ni(at was restoredl

andllth inverse VVI-V applied. No noise was added so that

Stiioot hirig oIf the< bispeetruni estimates w'as riot necessary

for exact recoust uct ion. 'The reconstrueted objeet is cen- Figure 1
I roidl('( ablount thle (origin which is at thle upper left. of the 0Object "Calvin."

Ne'xt, Gauissian %%-iit(' uioise was added to 1t) frames of

'( at vet' wit It raiidolii tranislat ions at a signal- to- noise ratio

Sl{) 4f ltt113. SNI? isd(efitied as thestinof the squares of
ilI(' igiial ove'r ti h' suiii (ifthe squares of thcn noise. A single =M I

frnvwithI SNI? of - lt0dR is shown in figure :3. The object

i' at th li'tpper left in ft(E frame. The reconst ructed objeet qW

is hlowni iii figure 1. Hi , algorithim of sect ion I was used. so .-

tiio The H)tIl b i ,pvt 'Ia were averaged blefore reconst ruetion.

I'i a (t of siilaion. iio (teal averaging of the( bispeetra

8 Conclusions

\ recir-,ivt' Ill' -btasted algitritlin for im'agte recotnstructioti
ITvl it'. lt-pIiruinl ias bteen reviewed and( tested. The'

1ift llii latinuct and iioi~t' rtedutctio itri l cit' oS(f then triple
It lia t -n xilttiteI toohdtain istiniates of a ranl

d T IIkt I a 111i I I uIg an It I t at itlig objectI frti )I I itilt11 i ple nloisv

irim- u'. I it,- I i~lwt ti ii-bIaset a Iprolal ditoes riot reqirel ~i
-111W it III )t I Itt ( 'potIiIt tuolddJI II01IT'm. antd is itidep~leill
4 hep (,I nn- titit'-etlss. Sititilatjolt res-ult, art'

,'v,J for a ;tu itr iautlatiiig object iii addtit ive (Gaus- Figure 2
it whit t' r,ji- 1 t ,,~fIt rtco,i rio in frtoi 1t franlits R 'cuistI rt ijolt fromi iispct rtili of ligir'

Artkiow-l('(gmen'it: I III' alithl hi t idmast allitiatid willh

lit ii~i LJ, dii.M . idpr ftewr
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TWO-DIMENSIONAL NON-MINIMUM4 PHASE
SiGNAL RECONSTRUCT1IN

S.A. IDianiat anid M.R. Ragliti veer

Flectrncal Etiginieering D)epartment liocliester Inst iturte of Technology

Rochester, NY 14623-0887

ABSTRACT 1.1 2-D Bispectruni. Definitions and Pr-

[ lite existingz techiquites for reconstruction of one dimen- operties

4t'iial ( I D I) signals front saminples of its ispectrurri are not Let Y( n). 4j -s [71 nZ he thle out put of it discrete, 2- D, hii-

ellicieitt for redconst rution of (2-1)) sign als. In this paper ear space invariant ( LSI) systeni drivein by' statioiiarv nion-

lXvt p reset i new techiqu te for 2-1) lion Iiiiniimin phaise sig- Gautssiani white noise (NC WN ) ri(n). Let us assume t hat

Ia reotist ritctolt Xwich list's a small segment, of the 4-D U) i'ity( n)j } 0 arid Ej-u' (n)j - 1. Then, if the impulse re-

bispecri nun I he a ppro aclh uses the facts t hat thle phlase of spouse of thle system is h (n), the hispect rumn of y(np) is given
th lmier tranisformi of al 2-1) discrete siginal is periodic k'

an idtlot while (te niagnitutde is periodic arid even. Thus, B~,) 1(w)fl(A\)H'(Lq !- A) (I)
t hey can bie expanded iusinig Fotirier series. The Fourier se- whr w u, A J and
rt's coelicieiits of theise expanions are then recovered from Wltt - I 1 W

lie Fliri,-r series (of hispect rum phase anid magiiitude. The H (w) h h() e -~ ' ) (2)

itt] iletietat ion of i lie protposed technique s greatly simpli-

lied lv rising thle I'JI I for compiiutation of the Fotirier series Thle vector iiotation for representing hispectra and third or-

cuteff(ie is dcr cuiti laiit sequences of multidimeiisioiial signals was in-

trodn ced in [41, {9j. The lbislpect ruin is periodic withi period

INTROD CTION27 in its four v'ariables. arid for a real signal satisfies the
1 N R DU T O following.

'Ilie advanlt ages tof wsing t'e ltispectrtini for reconstruction p ~ BA w s()

of tote tilIieitsioiial. it~-iinunphase signals has been 8(,w A 1 ,A
well uloc1tntenit et Ill- 13 An issue t hat arises is whether i?~ )vB~ - ,A)(4
muttltiidimeiisioiial liispu'ctrlim estimation canl lie used for a =I( r--(5)
sii Ola r pu rpoise. Wie addtress thIiis issule with respect to two- Equat ion (3) im plics that it is enloughl to know th lhspec-
iittetsiottid (2-) sitds A-spitdntii'.ago a trulli over te regionl dlefined by,
to sort siglials on, heii liais of t heir phase properties tot test

hIspe-t nil sigliil rc'iolst rutitoii. is to tisc the classification S1 X - - Ai} UwIV - AliL,:2 I.A2 (13)

tov, ithet I?'v IFkA rolli and11 Woodsil 15.- iicir scheme classifies F~roim ( I), talonig wv i ft' ptriodicity of the hisjiect ruin, we
2 1)sig alsija, fl i- ah-oris: m n-m ll )ha('. ilil-lJ~x see Ithat it is eiioughi to know the inspect ruin1 in the region,

pr_,itl itl dltvisilig chcitiw'S to, recoser ii 2-1) signal frot its S2 fl,{ , A,1 7- j U!2 4 All -, 7r} (7)

lislelt ist to exlt~iid cxistiiv 1 I) ilgiiritiiruis . ......... arid fiinally, (5) imnplies that we require knowledge ouf thle
1w' ilillsols If iln riltillt.Iliese ext'nisi'lis tuli lisltectriiin only in te regioni.

lo "'u it ic, , f "li ' I tl)rius ( ,oIttniptit oltil I citt11tlexitI.. st {I I - 01. LJu w 0 w. L; 0) (S I

st ;Irig ' - it i It fo l It ('ft ls lhit.g t I rut a 1 t tiet ncf i 'Iliterefore, t lie fit it it it -it t itl region of sil1) p rt o f 11 l ie Itspec
I imnt of a real signa i S at mutst its largei' s us ;, '

-ii .w o p a ri m o Iii ,t i r m n X l t ite a iu ti n c llir ih to r ( c iut, l'itt o ritillv . th is is sl i ti i li lig tire I. fo r p i ni iiit X I it co ,r di

i' tttt i5 F It hiisltt'ttrll t ltkit fromn ai stilt- regionl (of I i lit- ~' i -d ' (1 i llit IVi I it-; for a. ut d A\ o~ver lie
i Ill, fit 11(1;1 nwnt gi, ti of s~i pp,,rt vit t r It'ex it g n I)FV tII ,- A lt e o o .d m "



values oni thle line AC excludling the origin ill the -- A, Vron tire above e(Ijiatiolis Wilil I I)

plane, it icludles all point inl the c. - A.. plane covc.-e ), 0 L; (M2- (6)
the petaglin P RJ 111IFor Lci A, 0. we need to look at 2kw (2) tw

just the triangiular region, DK() inl the u) - - A. plane. Inl Sincet qO(w) Canl bei a~ssumed to bie odd1 inl its argumlents, we
his colitext , we titlist poinit out that tile non-t'edindant" alwiei.a

region of support as given lby 81 excludes regio;;s that should cnwiei.a

actiialls be a part of tire non-redundant region. -h (rrt, n ) sin (w, m + wilt) 17)
O(bLtu n) sin(w, in - -Wit)

2 INL~fI-I]\'I~iLLCAL Bthe samie token. we t-air expanid v~wwuwl as

DEVELOPMENT (4 - t)siiwn

2.1 2-D Fourier Series ?slfem U27

'Takinhg itnto consaiderationi the fact that {sitt (, otl

Let N;---2w) be a 2-1) real. dolublyv periodic signial with wit ). si n (w1 in -wit) II 0 t, n, Pi -- ), ( 711, it ) ((I (t)}
period 2,r ill bothi its argilmuetits. Assume t hat it satisfies firmns a icoimplete irtimgorial set over thre region of initerest.

Ihe 2 1) IiriIdet Contitonis. It (-ai thlen lie expressed itt (1lf)-( 18) yield the following algoritlio to compute b(in it)

icusof its 2-1) fourier series fromt bl 10.1)

-' , ~u t;2 1X)C 1 i .1(11?ePJ ll witu) (9) 1. If either of in or ni is odd, thten

lie re blo.i) ( ~ in.,n b ) (1n)

x( mi. 71 I (,1 , -- expl - ll t wit )1dw, dw,
IT' .'' ( () 2. If either (rn'12) or (it 2) is odd. thten

WVithi X(.-I beling real. I- I "i m t
.(iii, it) blot it) -1b(, . ) (201)

*2 2
x') --in i i) n rt'ili n)

whleln iliotes Ciompjlex couigationi. Let 3. If hot Ii (i-m '2) anid (rt 2) are eleI hleni

2(1,i) let'i.i }~ 2 2 2 2

ib. 17) y-- 2tiir(iii, ii ) (12) Ili any~ iimplemeiit ationi of t lie algorit linm, steps I andl 2 ahove

shoutld lie tirst itiienicteid over thle range of initerest atnd
lb' I rigioutitic Fourier series represent ationi of -Vw 1 -2 step) 3 shtould lie carried wit afterwards to recursively cooti-

flosfr"Ilthei above equatitionls, ilt~e b( ii. ill il I ertis of pireviouis]c comp~utted valutes. 'For ex-

I 2)a(0 0 )11 a ilipli. i f we a re ite rest 'ii i nfi Tujig bjIl 71 1) fort ltt. ll*~1 J0 , r1 F~t~~oslWuii 77 ~1? ~ steps, I andt *2 1irovidt, wi, with Iiall luecessarY values except

A~ii itI,(.- ~~t Ii) ot), I'(t1. I) and b( 1~. iud I tesi' canl he' foundt~ fli-it stltp

N '' liiiii sil(, In - .tu) 1as

If A r-11 .& -'u i i ag iii mt S. I1 I l u tIe l-Iosiipii ,,1 at. -22

os 111i' 1 u0 fit is odd ifi pu')el il

2.2 A Ii f ri t I i ii 11D 'vt, I I~t

II M~ f c ll,-p



and (miputld and the rect.istruction is done with this trun-
HI l I?) -. ,) (25) (ateld l",urer series. The phase reconstruction is performed

2 U Il ' [2x 1 (26) 0(s; I h(k. k, I sin (w , k, t L. k2 (34)

I) III-I ilit I?(-. it n Ill. asi IIt~le be e' v i i tiheir ' agil lle rer-irtonstruc'tio is performed as
t tA l t lv h % (aill he1 m~litlell '1

i//( ,) ,.xp ,(k, , k2).,,,(, k, , .,,k,)] (35)

llit) itt. i. ~ l ' , I 27)
u: r': " in is "&r " <r:) 3 SIMULATION RESULTS

; T (I

FirrralI 1 (Inmsider the mininitim phase signal
0.I2. , _

l~t'.)I , \ i-, h o,, ., i)-, .. , . r,)- (2l) i( i5  
,i ..,) 1 0 .(n , , ,

"*,[ "-, 7tl),in. ii).t 'i Il w~n) lr,) J 1.2u5b(r~ .rr 1) U..I 66;(rri I~n 1 )

0- 17 6(rn1 2. n, 1) 0. 125b( i I i,2 2)

Sitoila r I, , vh pitsc r,-, Iri trcIi,,n algoritlhm , we cari for 0.0- 11(, 2. It, 2)

innlat aIr ag , riI It I fr t itr iiuule recoistrutioil as fol- (36
I, i . The Fourier series Coeflicie ts (If l,!(L., w ) ard Ill ti (w. W')

were' obtaimed from (33) using 256 256 equally spaced sam-
7(0)2 pl.s of (I I rue bispectru I)) over t] grid :(0.27r . :0,27r .

l. I))F (2l) TIe est i mIatel phase and magni t rde of h( It) are shown ill

figiires 3 and 5 respectivelv. The true plrase and rragni-
2 If -illwr (or ,f t r rI i - I. ti lher r e resp,,,nse fun tions are shown il figures 2 aid .1. As

- (all b' sceln it is niot potssible to distinguish tie true ((nes
,111.11) . i) r.r) (:10) from their estimiates. Ioth phase and magnitude were re-

(,nst ru-ted using loirier series ieclirients iver a small grid

2. f t'ither m 2) ,r 0, 2j i, 1d. tl ? of size 1i 8.
I IIrmpl, .In rh ris examphI we try to reconstruct tire phaseI 1 rr rr

0fit. ) if rrr.r) 2 2 (31) and Jragri l itu1 ,,[ f mixed phase signal. let
2 1 0 1

I Ifh i 1 rrt 2t I 2 arid it 2) are cv.n, ti h n tr 0.25bJ I) 'I II , 1.11! I)

II n (Ir,.n i7i( rt 2.rnr. I) 1 t 0.1!( iI, l ?r, 2)
itir.r ) , i nrlI ' (  ) (32) i). 1 6((71, 2.r., 2)

2 2 3:7)

I I i i ,. in-,td heri- thtl a r.c,.- aTrv rdilii f)r ll( Simihlr to exampl . I 256 - 2.56 samples ,f lIhe true bisper

;il.- il, , i i ,, i ll ,, 1, k is t l t l ,- be 1"l l i-Ii e .ew, ilrin were isted for reitcolstrli(lion ( I both phase and nragii-

,lit Ii'sItt! "'l'.'ii tie pre"ctiitationi of rilte algorithmi for tlltc. Figuirs [; and 9 sliow tile true phase andl1 mlagniitlde of

ih,," rl'f ,wI r-i u t iIi. l ., ap il 
,  

I t i l i i litui de r( ,l lite Illor iv t rai -,firlll if b( rt). Figure 7 show s tie estimated

,l r,i, t l, ail,,irit (til tIhi . 'Ilit plua< isi iillation errtr is shown ill ligure S. As

I i pri tit) 1 itr1t)-n1it-nili iri. C11 Ii1 I i st I1 1 . t ;ivit it Iant be seti large ( rri(rs (o tir (mliV at fNa t. frequencies where

\ Iitli--. /? " , -. I ri T?! rr r, r iI. I... tie lt? tr I S lti r -tp s is IitoI' tintiOUS. Tis irolem call

t r ,1 oh, - wi .IIi runt ) t* r u I j)"," i (I I stg t) I iiW raIrIpeII flrl tio l -.(s,.; ).
I liv t l e l t liluii v t' it( it, estimalte are sh ii , il fi iiies

/.- .- - A- i 2 \ hut,, { ij- I .", 1 I r eilt I -,t-tli( , .- I. (s tit 1 ( st*ii ih i , ll litude re

2::Il) tt Istit l i, I trot II ilii hi , li s is (lil" ' I he fal

7 ' - 1- I i Ii I 1 . t) I Ir ' 1. 11 i tiit il i ll itrgiirit i f Ilite I trieI

1rv iill,,r l (, mf I
I if I i. 1, r ir.

L- ,, i, - -... )n)- .. .. (n n- rii l- if t.,,"!l, (f r i i -ut in,,



4 CONCLUSIONA

TIiTniTIiTmi pha sipt.iaI reconist rlction~ uisinig siam1ples of its C

Ilisplectrurni alonlg thle lIv perplaie A; A ;tthe laspeit rii 2

frequenicy domiiain, AnT adlvantage of the appIroiach is that it
uses5 a finiite' numbller of samics if tile bispectru riiifnctionl

and provides estimaites (If thle signial 1 ihase atnd im iitid
at all frequencies. 'Illii aipproachi is comiiipitiltionll. cost ef-

fective sice it call be Imnplemieinted via the 1 FT algoritliti.
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Figure 9 True magnitude for ex-tmple 2.
X -axis: Frequency in rads/sarnple

i igure 7 Reconstructed phase for example 2. Y axis: Frequency in rads/sample
X-axis: Frequency in rads,/sample
Y -axis: Frequency in rads/ sample
Z a xis: Phase in radians.

0.6

Figure 10 Reconstructed magnitude for example 2.
o X-axis: Frequency in rads/sample

Figire 8 Reconstrtiction phase error for example 2. Y-&xig: Frequency in rads 'sample
X Rxiv Fi ee1iencs ill rads sample

N" akxis: Freqlaen v in rads /sample

7 aXIs: Phase ill TAffiiAl.



E. TLLIAIY T j:: :'!LT IPLIE PT Al:E LETECTOEL:-

A ND HIP iot CCEREL.AT ION ANALYSIS

oun-Yonc,1 ANLani Iukus-uj SAID

c, t, v.-' 1~ cj i i v ,i byu I nc7 mul t i ip dn tet rs ',
ror, ei and the useful nes of ths h eohe

r- n nr s01cr r ' n inc wave sy stem :n a wate-r tan.

lit th,, fl uidi Licoss are , I) Doplr veI oeme t ry,
rit . -tme n"- c at some kinds ofse-d in the fl w,1

- -- 2 1s woe 'or '-r ir th avera-e velocity between two iet..cto)rs a nd, i i i)
r-,. r1 W" ci c ur o the ave rage velioci ty cross,-ing7 he, beams ameng -

e 7 d -,,u an 'm in t ne I low
1" -. 'iL-V, ""a 'aiv« tern dc~velopod for the- me-asuremenrt o f 2-D . sloolity field wh ic h are

i -nneecli1on w ith the timographic macinstruction, or scanning7 of the-
- " [ , I veoe ity field mas urement, ho~wever, only thi scanninp oft these 2- D

'"u" it, oracineit heco'e very o ,plirated adtks quite a lto ie

H -~- n-,; 7thcl j -r Jlrect of"~ -- L' velo)city field b)y using! multiple plane

oi7 rdeLr 'r-''arlainanalysis is pro,-posedi. In th is method, the
u "', 1rl fy "il~ is~ Ct(A-"tedl h" multiple plane cuetectors, and its j-B structure is

-nily -nerresp,- dine, hijT~ order cros' Icorrelition analysis!- for them. Preliminary

li.-, rl t-a"aner' wo~ve syok, t.m in a ater tank were carried out in order to confirm

7,, . i ithe emDit vine, 'h" ci-ripies of the p)ronosed method and obtained

-, '-,I na-' Is !,ed r'rthrough thijjn j~ tren- as i sown in Fig. la . In.
- if 'i"

1  
irea -e r' thu- velorcity ve:ctor and position, on a ) plant- .
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-' " ~ ~ ~ ,, ur- '"''l naisis to- detect the delay timerode thatth

)r FT. P1- wh i -.h are arranged,, aclon, x-,; Ix-x,,,Z, x- an
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/ ~ '-n E- -n0' 1-n e ratef, ;v r a'--'- ~leo
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T0



A i t I ui u-iitl _A, -i>n i Jrr h: xo- n ': -I1 1 k Ti _n t lountiri - p to AX iii on:3u xr),

1r: r. 1 ipoi In to- 1 IX n-.r:! m r p. i-nt ;,,j'rn-e ) f wh.Ic (-, . ,rd in.1too s r a I-e tir
ti-~ I -in, ; i~n c-, of *_n- s tr,--am wee :!ip- 1. I it,,or -i theo I,!ii-:. Hiron the strfoami
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ieou0 vi.aln %n :K'rl oo ai.t -erm LWlo C union of trhe plane detecr,

.... :r xhW: to zk. in. Fiv7.. Th. nirn[ has a Lot f jrntulre-ile IfiriaticE: and its auto-

-crc~tin kn sfficien~tly -C=Wr.on- ike form. The sign or the variatione , howerver, may be botr.
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r : -"! 'v 1.,.1' i ty ' IIl 4.3 si, h c ncIi s t s ,f twn st ream s o f o ppos ite d irec t ions thro)ugh
;1c -r ;., se s I-, .-nwn in Fig,.7a. From the correlation arnalysis of the observed

f:'o, r In .ix!.,-order mnmemnt spac= ait V -iTy 49, T 8, 133,
T . , [-4, -9, - 5, Tc-Ic-J rny-c . Flg.6'shows a s~ction f the

T-- 0 ! uhcti n. F r m teopks pararfeter: of the velocity t ield were estimated
. r'..The- result 1s shown in Fig. -- arid Table 1 . They show quite good

z"1, C'p-:. As an an..ther example, a laminar-like flow in a pipe is observed by
n ~ ~ ~ ~ ~ ~ ~ n r-- i!- 't-pp o31mm as is shown in Fipg.'?o. Where, the average velocity across

-... - it Shcn: - Itn'n::tct
*.--. 1 4:e an bserve hig7her velocity around the center of the pipe.
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PL,'. (a) Given pipe flow and (b) reconstructed velocity field.

CONCLSIONS

A aw tphic 3-dimensional velocity field reconstruction method which uses multitle ultrasonic
plane eir anl high order correlation analysis was proposed. Concrete al'zorithms of the velocity

recr n.-7tion was shown and their validity and usefulness were demonstrated by the preliminary
lee .iled analysis of the sensitivity of the system is under way.
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Object Reconstruction Usin3

Thi.rd and Fourth Order Intensity Correlations

A. S. Marathay and Y. Hu

Optical Sciences Certer, University of Arizona. Tucson, AZ 95/21

Paul S. Idell

Air Force Weapons Laboratory, Kirtland Air Force Base, NM 87117

1. INTRODUCTION

Two-point correlations of light inten-

ABSTRACT sity, as pioneered by Hanbury-Brown and

Twiss2 . provide information about the mod-

A phase retrieval method' using third ulus of the spatial coherence function of

and fourth order intensity correlations is light received from a noncoherently radiat-

employed to reconstruct the object. To study ing object. However the phase associated

the effectiveness of the reconstruction tech- with the complex coherence function is lost,

nique with estimates of intensity correla- making unique recovery of the source map

tions from measured data, we have devel- problematic. Third and fourth order corre-
oped a computer simulation of the light in- lations of intensity have recently been

tensity measurement process, In this simula- shown I to provide sufficient information to

tion. the speckle patterns of the object are recostruct the real and imaginary parts of

generated and third and fourth order inten- the spatial coherence function. With a com-

sity correlation estimates are formed and plete mapping of the complex spatial coher-

used to rcover complex spatial coherence ence function produ-wc, in this way, i

function maps. Combining this simulation unique two-dime.-,al image of the origi-

with the reconstruction procedure we have nal noncoherent object may be reconstructee

studied the behavior and efficiency of the by inverse Fourier transformation of the

end-to-end image reconstruction technique. coherence function map.



This procedure deals with measure- Aabh - gabhCOS(Oab +bh +ha) (I)

ments in the pupil plane, in contrast with

the focal plane measurement used by Weig- Babch- galehCOS(Oab+Obc+¢ch+Oha)

elt et a13 . Also our procedure attempts to +gacbhCOS(¢ac+Ocb+Obh+Oha)

reconstrust the phase explicitly as opposed +gabhcCOS(Oab +bh +hc +ca) (2)

to the interative procedure used by Fienup 4

- - - -. '.".. The smbols Aabh and Babch are related to

After a brief review of the reconstruc- the third and fourth order correlations

tion procedure outlined in Reference 1. we respectively, gabh - 1abII-fbhtYhaJ and

describe computer simulautn of an experi- the gabch, etc., are defined in a similar

ment set-up to generate the speckle pat;.ecns way. The subscripts a, b, c, h stand for the

that is reflected from a coherently illumi- 4 points of discrete spatial coherence func-

nated object. This experiment is described tion map, as in Fig. I, and Oab is the phase

in detail in Reference 5. The third and of two points of the map. .a these equations

fourth order correlation functions can be the cOs~ah and sin~ah are unkown. Fhe

computed by ensamble averaging the speckle simultaneous equations resulting from the

frames. To implement the reconstiuc ,'- pair of Equations (1)-(2) are

procedure we introduced a computer confi--

guration to restore the complex spatial Aabh M21I M 12 ]cOs~ahM2 (3)

coherence function that is a 32x32 discrete B'abch M2 1 M22  sinah (3)

two-dimensional map. In the configuration,

we solved the real and imaginary parts of a The symbols not used in the previous equa-

unit cell, and then solved for the whole tions are defined by

two-dimensional map from the nearest to

the farther site, point by point. B'abch = Babchgabhc

cOS(Oab +Obh +Ohc +Oca) (4)

M I1I = gabh cS(Oab +Obh) (51

2. THE PHASE RETRIEVAL ALGO- M12 - gabhsin(ab +bh) (6)
R1T-M M21 gabch cos(ab+bc +(ch)

+gacbh sin(Oac +Ocb +Obh) (7)

If the wave amplitude of light sourse - g

obeys Gaussian statistics, the third and +gacbhsin(Oac+Ocb+Obh) (8)

fourth correlations of the intensity fluctua-

tions Al from the mean are given by

1)5



These quantities are known either through

measurement or because they relate to the

unit cell. Hence the equations may be solved

for the cosine and sine of Oah- -
,//

b L h

/ /1IFig. 2 The object

Ck - - --- .. ... c : t ..... V'c

(a) (b) The subscript k labels the random number

Fig. I (a) Unit cell. (b) The configuration seed used in generating the kth speckle pat-

used to solve for phase Oah terns. Here k-l,2.N. That means we have

generated n speckle frames. Fourier trans-

3. SIMULATION OF THE LIGHT INTEN- forming the object,

SITY MEASUREMENT
Sk - F{Aobk(xiyJ)} (10)

I,. order to test the object reconstruc-

tion procedure, we stmu!hted a light inten- and taking the squared magnitude. we get

sity measurement process. In this experi- the speckle frames

ment the object is attached to the mirror

and illuminated by a laser. At the detector Sk " Is kl 2 k = 1,2. N ,

we obtain the speskle pattern of the object.

To get the data of this experiment we The flowchart of the simulation pro-

developed a computer simulation program to gram is shown in Fig. 3. The intensity of

generate the speckle patterns of the object. the speckle image generated in this way

Our amplitude object Aob is a two valued should obey the circular-complex Gaussian

pattern consisting of 32x32 discrete points random distribution.

as shown in Fig. 2. We add the random Once the bank of N speckle frames is

phase 0 that is uniformly distributed in available, we can derive the second, third

[-r r] to the amplitude object points at dis- and fourth order intensity correlations by

crete locations (xi.yj) of the rectangulai" averaging over the speckle frames. To corn-

grid. The object formed is given by pute the phase of a point relative to the

origin, say from h to a, we only need 4

Aobk(xiYj)=Ao xi, yj)e( J (9) points a. b. c and h. So it is not necesary to

, 6



compute the whole set of the higher order used is shown in Fig. 4. We start from the

intensity correlation functions. We only unit cell originated at zero points, and corn-

need to correlate 3 points, a, b and h, for pute the phase from near points to farther

the third, and 4 points, a. b. c and h. for points. So for each point we use only the

the fourth order correlation functions as points that were previosly computed.

shown in Fig. 1. In this way we can save Only the first quadrant of the map is

significant computing time and memory shown in Fig. 4. The second quadrant can

space, and have enough information to ret- be calculated in the same way, and then the

rieve the phase in our problem. third and fourth quadrants can be obtained

by the symmetry relations of the coherence

i Real Object function
(l Y)

Amplitude Object r=x 2 ,Y1 2  r* (-XI 2 .-YI 2 )

A - A eok r(-xI 2 ,yI 2 ) = F* (x12 ,-Y12 ) (!2)
-- A = " lot)

'k random numbers
J[-s] To reconstruct the object we only need

2-D Fourier complex intensity function. So, instead of
Transform solving for the set of phases, we solve for

Sk - FlAk ob]
.... .the real and imaginary parts of the coher-

Speckle Frame ence function. Thus Eq. (3) can be modified
Sk = kq

to

k k+I k mnj

Store I Aabh 1 'M'1 1  MI 1 2  Re(yha)1

I B'abch J M' 2 1 M' 22  lm(,Yha) (13)

[.EN')

Figure 3. Flow Chart for simulatirn where
of speckle frames

M'I I e

4. PHASE RECONSTRUCTION PROCE- M' 12 = Re(-yab)lm(ybh)-Re(-'bh)lm( yab).

DURE
and M' 2 1 and M' 22 can be written in a

Knowing the third and fourth order similar way. The solutions reduces the

correlation functions we can use Eq. (I) and number of step: in the computation and

(2) to compute the phases of the intensity solve some problems in the calculation of

.,herence functions. The configration we the phases.



n N =0 where TV is the true value and CV is the
computed value at every sample point.

There are two main sources of error

A /A I .. - for this method. One is accumulated by the

/- I I computer. For a point that is far away from
'I tak man cop

/-."-" - \t [he origin, it will take many computing

1 2 3 4 5 6 7 a steps to get there. When the errors are

(a) accumulated to a certain value, the simul-

N = 1 taneous equations become ill-conditioned
2 and we get wrong solutions of the phase.

They are the peaks in the error maps as

shown in Fig. 6. This kind of errors resem-

,bles noise with high frequencies. We have
/ / / / /simply used a low-pass filter to suppress

M1 this noise.
3 4 5 I

(b)

Fig. 4 The computing procedure for first I

quadrant of the intensity of coherence func- I

lion. (a) The first line. (b) The second line ,

5. THE RECONSTRUCTED RESULTS (a)

We reconstructed our object consisting

a triangle and a coner embeded on a 32x32

zero paded array. Two thousand speckle

frames are used to reconstruct the object.

Fig. 5. is the reconstrudted object compared

with the true object. Fig. 6 shows the error

maps recostructed coherence function. The g-. 5 (,0 Irile ohjeet (h) Reo istru,:ted

error is defined by

E - ITV-CVI (14)
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Another kind of error depends on how

accurate one can get the phases of the unit

cell. The smaller the subdivided unit cell,

the more accurate will be the phases of the

unit cell. In this work we simply assume

that the phases in the unit cell are known.

How to get the phases of the unit cell is the

objective of this method.

The statistical characteristics of the

speckle pattern is another factor that affects

the quality ot the restored object. This can

be avoided by using more speckle patterns

The next steps in this project are to

improve the method and try to minimize the

errors so that it is more efficient.



BISPFCTRUNM IMAGING THROUGH TURBULFNCE

J C Dainty

l3lackett Laboratory, Imperial College. London SW7 213Z, UK

Abstract Labeyrio proposed that the average eneroy spectrum

of the image be calculated - if i(x) denotes the

This paper reviews some aspects of bispectral instantaneous image intensity and 1(u) denotes its
imaging through atmospheric turbulence. Particular Fourier transform, with o(x) and 0(u) denoting the
attention is given to the effect of turbulence on *he object intensity and its Fourier transform, then the
bispectrum, signal-to-noise ratio and algorithms for average energy spectrum of the image is related to
data that is photon-limited and two dimensional. that of the object by

1 Background <l1(u)12> = lO(u)12 <iT(u)1 2> (1)

Atmospheric turbulence limits the resolution of long or
exposure optical imaging in astronomy and other

applications. For example. the diffraction-linited <I(2)(u)> = 0(2 )(u) <T(2 )(u)>

angular resolution of a 5m diameter telescope is
approximately 0.25 arc seconds (in the visible), where <IT(u)12> is the speckle transfer function

whereas in practice turbulence limits the resolution (note that this is a transfer function of energy
to =1 .0 arc seconds (i.e. a 40 times loss in spectra). It can be shown [2,31 that the speckle
resolution). In effect, a large ground-based optical transfer function is non-zero up to the diffraction-
telescope has the same resolution as a 10cm diameter limit of the optical system and therefore it is possible
amateur telescope because of atmospheric turbulence, to obtain an estimate of the energy spectrum of the

object, 10(tl)12, by deconvolution. Although the
In 1970, A Labeyrie invented the technique of general theory is written in terms of wave intensity,

,per'kle iniL ,fero retr, in which short-exposure the results are valid for images consisting of detected
frames that "freeze" the turbulence (=10ms exposure photons and in practice photon correlation techniques
time) are recorded [1-3]. The short exposure frames are used to estimate, for example, the image energy
have similarities to laboratory-generated laser spectrum. Under these circumstances, information
speckle patterns: in particular, the averag , speckle about 10(u)12 can be extracted at photons rates as low
size corresponds to that of the diffraction-limited as one detected photon per frame on average.

Airy disc of the telescope. ['his gives the hope that
an appropriate statistical analysis of the the short The problem with energy spect rum analysis, Eq (1).
esposure data ill ,ive (liftraction-limited is that it i, not possible, in general, to recover a
illOhMii about the Ohject. function uniquely from its energy spectrum (or

Fourier ModuluLts) [4,]. Variots a1lgorithns exislt and



work with partial success, but one is never assured

that the solution is unique and in any case the

convergence properties of the algorithms in the
presence of noise are uncertain. However, one can DX

recover a function essentially uniquely from its
bispectrurn and this is the basis of bispectral imaging
through turbulence.

2 Bispectral Imaging

2.1 Basic Method

Bispectrum imaging was first suggested by Veigelt

under the name of "speckle masking" [5] and
subsequently has been developed extensively by Dr o10
WeigeIt and colleagues [6-101. The instantaneous

bispectrum is defined as Figure 1

I( 3 )(uI, u2) = I(ui) (U2) I*(U I + u2) (2) phase of the image bispectrum equals that of the

object bispectrum. Figures 2(a) and (b) show the
where I(u) is the Fourier transform of the image results of Monte Carlo calculations of the modulus
intensity. In Eq.(2), u I and u2 are two dimensional and phase of the bispectrum transfer function,
vectors and thus I(3 )(u 1, u2) is a four dimensional broadly confirming the theoretical prediction [II].
function. Since typical image sizes may be 512x512, The significance of this is that the number of useful
it is clear that there are potential problems of bispectrum values that need to be calculated is
computation time and storage when dealing with the typically on the order of 4-8 per frequency point.
bispectrum, even allowing for the inherent 12-fold
redundancy of the bispectrum of a real function 2.2 Signal-to-noise Ratio
(such as the optical intensity). It i fairly

straightforward to show that the average bispectrum Because the significant parts of the bispectrum lie
of the inage is related to that of the object by close to :hc axes, i.e. u I 0 or U2 = 0 or Ul =112,

the modulus of the bispectrum is similar in value to

<3uu2)> = O 3 )(u, u2) <T(3 )(u1 , u2)> (3) the modulus of the energy spectrum and thus the
signal to noise ratio of the bispectrum is similar to

where <T! 3)(u 1, u2)> is the bispectrum transfer that of the energy spectrum. Detailed calculations of
function of the imaging process, the signal-to-noise ratio of the energy spectrum and

bispectrum have been made [10,12,131. It is difficult
"hlle behaviour of <T( 3 )(ul, u-2)> provides the key' to to draw general conclusions, because the result is
bispecirum imaging. Figure 1 shows a schematic of object-dependent. lowever, in broad terms, if the
the modulus of this function for one dimensional original data is sufficient to determine a reasonable
variables u I and u2 - in fact, only a small band estimate of the energy spectrum of the object, then it
around the axes and a hagonal has a significant value should be sufficient to provide a bispectrum of

and this has implications for the amount of adequate quality to allow determination of an object
computationl aud storage reqtired. Theor' also map. Depending on object complexity, this implies
predict,, that the phase of the hispectrum transfer photon levels anywhere between I and 103 per
ttUcliOn is approximately iero, implying that the frame.

'131



as a whole is a list of (x,y) and time coordinates. A

number of photon event detectors whose output are
of this form 'Ire now available. This type of data is
well-suited to photon-differencing algorithms,
implemented either in the real or spectral domain

N 1141. In practical terms, photon differencing

0 C. , algorithms are most efficient on very sparse data,
typically less than 100 detected photons per frame.
An added feature of photon-differencing algorithms

is that they allow the updating of the calculation for
every photon that arrives. This has the effect of

,2C 0'0 s 30 permitting a moving exposure window (rather than
discrete frames of data) and yields an improvement
of signal-to-noise ratio. The optimisation of the
process of using time domain information is an

Figure 2(a) important area of current research - this implies

extending the (four-dimensional) spatial bispectrum

to the time domain.
2S C-

The amount of calculation necessary to compute an

: .. adequate number of bispectrum values is such that it
125.

is currently not possible to compute the bispectrm
in real time. This represents a major bottleneck in

N ; the practical application of bispectrum imagino and
further research, probably involving parallel

'2 5- algorithms is clearly necessary.

The object reconstruction problem is less onerous
250 125 0 .... s 250 computationally, since it is only done once, after all

u_ 0+ ....... the bispectra have been aveiaged. The method first

Figure 2(b) by Weigelt is recursive: equating the phase of both
sides of Eq(2) and using the fact that the phase of the
bispectrum transfer function is approximately zero,

2.3 Al.orithms we have

Algorithmic problems divide quite naturally into (Ul,U2) = O(ul ) + 0(u2) - O(ul + u2) (4)

those concerned with the determination of the
bispectrum from raw data and those concered with where 0(u l,U2) is the phase of the object bispectrum

the calculation of the object intensity fiom the object and 0(u) is the phase of the object spectrum. The

bispectrum. recursive algorithm uses the values of the object
phase at low frequencies, and selected values of the

Astronomical data is typically taken at low light bispectrum phase, to calculate the phase of the object

lcvel, so that an image, instead of being an array of spectrum at higher frequencies. In a discrete matrix

pixcls each consisting of a number of bits, consists of representation. the value of the plase of the object

at list of' phti ii (x*y) coordinates; - in fact, since the spectrumnl at the origin. o(O), is zero and the value ot

Mhle prccs s of' turhulc~ce is dynamic, the data set ot I ) can also be set to zero (this means that the



reconstructed object is centred in its array). The frames [21]. For two dimensional objects, photons
signal-to-noise ratio of each point of the bispectrum rates of a few tens per frame are more typical.
is used as a weighting factor in this computation. Extensions to random rotation and scale are possible

through coordinate transformations.
This procedure does not necessarily distribute the
error in the best way in Fourier space and is not Recently, Lohmann has proposed the application of
positive constrained (the object intensity is of course the bispectrum to pattern recognition 125,26].
positive). Apart from ad hoc methods, it may be
possible to enforce positivity by applying Bochner's Acknowledgements
theorem [15] and extensions of it [16,171.

I am grateful to the UK Science and Engineering
Another factor vwlich has to be taken into account is Research Council for support.
that the Fourier modulus, which is estimated from
the energy spectrum Eq. (1), is often unreliable as it
depends on accurate calibration by a point source. It
may therefore be desirable to use only the Fourier
phase in the reconstruction, applying a phase-only
reconstruction algorithm [ 181.

A recently-proposed method for blind
deconvoLItion [191 may also be applied to this
problem.

3 Related Problems

"lhie bispectrum is useful for imaging in astronomy
because. unlike the average image, the average

bispectrum is not degraded on atmospheric
propagation, (The samne is true of the energy
spectrum but one cannot reliably reconstruct the
object from its energy spectrum.) There are other
sitilations in imaging where this is also the case, in
particular the imaging a randomly moving objects
[2( -241.

Clearly. Eq (2) for the bispectrum is invariant on
translation of the image i(x), since this simply adds a
linear phase term to I(u). This means that the
average bispec:rum of a moving object is simply
equal to that of' the stationary object. In this case. the
whole of the hispectrum is of value in estimating the
object from the image bispectnim and the signal-to-
noi(se ratio can be high. For example, for a one-
dimen i1sil on object, we have de moistrated object
rcconmtrction at photon rates of less than one
detected photon per frame on average and 104
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APPLICATION OF EIGENSTRUCTURE BASED BISPECTRUM ESTIMATION:
EEG WAVE COUPLING IN COGNITIVE TASKS

David L. Sherman and Michael D. Zoltowski
School of Electrical Engineering, Purdue University

\Vest Lafayette, IN 47907

Abstract: An orthogonal subspace-based approach for two dimensional sinusoids can be applied to the
bispectruin and the estimation of the frequencies of quadratically phase coupled sinusoids. The method
determines peaks in the bispectral domain by the direct partitioning of noise and signal subspaces
without the need for transfer function parametrization. It can be used for determining domainant fre-
quencies involved in EEG alpha wave coupling.

New high resolution methods for bispectral estimation have been developed in recent years. These model oased
procedures rely on the estimation of system parameters for the calculation of the bispectrum '2, 3. In cases of quadrat-
ically phase couplen sine waves in noise with a non-zero third order moment, there is a set of autoregressive parameters
which represent the the trio of sine waves. The sinusoid triple is a fundamental unit of analysis for bispectral estiria-
.ion as the single (pure) sine wave is for conventional spectral analysis. Using a geometric approach. we have I
developed a method for estimating the frequencies of discrete, phase locked sinusoids in noise of 3rd order whiteness.
The riethod is an adaptation of the MUSIC (MUltiple SIgnal Classification) method used in conventional second order

v... and dir2ction-of-arrival estimation !14'. Employing eigendecomposition, the information in a matrix
containing the third order cumulant information is used to compute the signal and "noise" (orhogonal) subspaces.
Traditionally, the subsequent use of rank reduction and the orthogonality of subspaces eliminates much noise from the
conventional spectral estimate. For higher order cumulants, our noise subspace is conveniently free of Gaussian noise
and is comprised only of noise with a non-zero third order moment.

Rank reduction methods have already been utilized for system identification and single sine wave frequency esti-
ruation using the 4th order cumulant statistics by Giannakis '3' and Swami and Mendel S.. respectively A bispectral

appilcaion can be developed by considering a fully two-dimensional region of support in the cumulant domain. We
luild art asymptotically Hermitian block-Toeplitz matrix composed of third order cumulants of our time series.
ruIploving a "noise" subspace-based frequency estimator, we project a two dimensional frequency kernel on the orthog-

onal complement subspace. The reciprocal of this projection is our frequency estimator indicating the location of a tri-
p .of phase coupl(d siiusoids in the bispectral domain. Our method has proven successful in providing accurate, high
re'ollicor. estimates of discrete bispectra. The use of a two dimensional cumulant cut provides a direct estimate of the
lis.lpeciruin withoiit transfer functioi parametrization that characterizes traditional periodograin methods of higher
order Irectrun i estimatior 4 . In general, transfer function parametrizaition is implicated in higher order spectral esti-
in:;iio: wkhen 1-I) or diagotial slices are employed.

Our m(ethod is ideally suited for time series where detection of a small number of phase coupled sinusoids is critical
ror "i,,iracterizatioii. Understanding the detailed specificity of tie human electroencephalograto (EEG) and its

("'INiorhirl correlates requires detailed knowledge of its statistics, especially Gaussianity and linearity. Elul 5 provides
illfor:,a?0t> or, the changes in Gaussianicy during the performance of mental tasks. He does not utilize the bispectrum.

relies inead on the chi-squared "goodness of fit" test. le alludes to the need for understandint Gaussianity in
t,.rin- of synchronization of individual generators, i.e., phase coupling. He remarks that when the independent genera-
Tor, ,,. )tue de-synchronized we approach Gaussianity. Regaining synchrony suggests that the governing distribution
*,.r,,,; a aY fron a Caussian character.

I),inew itrtth, et a . i provide ex,:ellent evidence of the coupling between individual frequency bands in their
,pfi alion of te direct ['"T-bas(d bispectral analytic methods to EEC(.. They found evidence of synchronization of

o r w,vi'lbanr ilra<'tiois. T.ev detected quadratic noti-linearities wNith signal bands that do not have apreci-
'',' . ',,r.il re-pru-(nttri ,r,. l ven wit Iil"'l 'T-based techniques, these auith-rs remarked aboult lII narrowness of the

, , -r -. .ill" %. h ;t!ph:1 utuld is-13 [iz) involved in the couplin,s. The sidebarul(s rlispla.eh litile or no coupling. A
r( o-": T, . ;,' iiq' ' , 1 ':' hi I- ' i, (i v-rist rui'tuiri niiwt1od can eailv '-how a(nsitiviIY for narrow hand discrin inatio ,.

,T ,. : 1,, 'a;- a, h,,'u ' ,iei:t(d aitlh rnon-linea:r iilr:ctions 13 . It niay he phisi' locked xuithl subhl r-
' 1: Ihi -o pc larnsif (or.'t I t 20) hzi ha l. 1 1atzeral a>tntirnietrie- i.i alpha tign:! produr-

,:, 5, a', ,'ouii,, -a ,s!, i ti ti,, awll' difh'etetiil ict ivitv ini each side, of the, brain. Sentisorv in ,it ,':oises a disruption
.'' t :. l 'It s l ' ,srs'ept lii:1 or pui rlY oxiot rliu activi., :. os or power iin It,, :ilph; t badi , - ftil all

.,x ; "'f ion. \ipha rer' O .ioti s- ii ."oa i ',d in il ler litalf of lie brain l iruig t;14 t lithnt reotiire c.rial
:r i:,1ris:st i';1 op ( r.iti -

.  
ho right rli' uf" o srain k.l'i ; vi' . iis ai en linke( Io holistic

i ,, ! -, ,tt:,1 4ki11 ,ask-. It, ;, ioniplitt YIsnt;Ary f;i-hilon, alpha d,'-,. hroniitatio o'licr- ,on thes' right l;nd
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I 11 1 1't 1iip11 (O1 1Z t'0o4 I! t i % '1 11( f ti1ti 11s ' u ('ht a.:15 Ic Uiit' I r o tatt iont of a geotliltric figure 7.9,10 . ost

F, i',Ma l%' pave %i (ed sVcil i'm'd power measure, to iipdiciteu ailpha~ litcrAhit %-. PlIt- colii~i ng l otoinnt
.1:~t:, 'V:i'terze oi' alizi cerehrail fonctoiLinal specTializaItioni ini addition to con ventiotid rma-aslires.

Eigendecomposition of the Third Order Cumulant Matrix.

'Fo (ievclop e'14er11 ecortiposit ion for hispectral analyvss we first staite that the fibispe('trull is tbe Fourier transfortt of
a' (.1 ) rde(r Ciiiillint or tutocorrelation sequence,

-3 ,. V V clon)ex p j(in. - n

c (n ,it) E'Lx(kfx(k -iii)x(k- ii),

ii oirder :i11,0 orr( 1ttion of r niiti jroceq, :x(k)!, 'I'lere is ant rnport:.t s\'ntiretrY rfHat itt oiot litiitoz

!;I. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i iiI l l i1.i nI -cll 1. ItI) c( Ii [I i 11 1 n. TI I

''7c[ :Ii ll'1 *''n''tiii of two frequI'to' itubies ;is thie third ori('7r ctiifan: i aI timtnion of' tv~o iina,,

:I;, 'Ii1 IJ Im., ' ru' '' IT (br1: etec t qua dratic tioi-lineanrity mntonti'a triple of sinuiosids. Ifirie inuisoid, :are ;ihf lo 1he
ne ~i i oii freiieicx'osdpfi'e 're the sumi or djfhoreiiot, of' tfwii- o o I ar : otiiisd'

o0 %1 t h po r . p I ri roII)n my o nl Yrid i cat e In p)cIIr esencei o f s ni i i I l lao n i isn , :7g; I.l-, of1
7() O:l: li Ii II(.tro of ilt waves are I i's( locked does a 1oi!-zceio fiispectral ('5; i!ttItti reS.Ilt . tI the

:i I ,Il otihii :i imzlie pik 0(1.ur' ;it i oordjna tes jf) oln). if sin usojlds -w itl fri'1 iieto'ies r f anod r ( f'-

o . t pi I- .)III in tI : ii1)ili t I , - iit Iisoil tr! pli's It noI-Pero i furl mi~o(it w ht nise. tlie thlird orde r

2 -I n i, j c', ,2 -( in ,. n) -. . t

I it :ti ifo.idtm! of doI' tit sot. i tfie magnitude of the thiird momieiit of the %ihne noi ,e proces.

p, i:v Ownt :,rat e ti hrif order ,'tlat1.1, sequence iti a (p-I s(t,- ) order block ''o-pfit z mtitix. C.

I (
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T Ii; * It 1~ 1 t. it Ii I alte tre (.(w I ! it ;: I iretiot of' t It( sitm of tI ic t It!r(I ordeiii tont~it. F or (awIf of
- \t)'C( :1 f)t;!:lltiiitii\iixira ir of nlon-zero eigciiil ie. henice Ote raniik of the

12N'. I> ii>;iitntpctrnil i'stillimor is.

p-Ii .:i 7
.X f;~''i , r< 1!i a h rojeiitron operator a)re those tHat1 spitttotse siihspacev. T1he

co:li;til k)ock. vcitor. :In( tutu Cts iii Tttul(ti1t. %"ectOr. :i . -f re siih (, tit I 1.

ce CX IJ IT I

1:.-!!1 It - Ie i t i to :,~it t fie v t:- or cottst it u li ! t i locked froeiu tie( .

7'1itI t 11 oa - ill t irte iiuise, ioigtie ite lmlotugtnlg to signa iihs i (ige tlvctor- irc ilhe 12

;it l~oii lO\ I iid k(i ,%ti if' tuep cti~clv) 'I'ipl tioi-t riit. %kiii 3. I ille.

T~; isi - l I .I sL i',Ienv h-ie ea I( ,l1 es I a ti /e1 zro.

Experimental Method and Preliminary Results

piated ini i rum~ii stliui of ccrehmrl sp' ( uliatoniat l'iitiit, (tiiivcrsitv iimIKG
he c~.......0ricOrtlinii ma acoiciiiied perforinanie of several uiffretit cogill-

-o (111,r diwrtttl ziiha response oil at lteral tais 12 . it each of fout-(nint a -;-I task was to
K :r~ ii 

1 -teet liseinte o expetrirnnener spe)(cified taoT -iveni) wais recorded durinig thie fifthi sessioni.
V, 7 i t .I')i11. g if I r r i i i r, riittoit t. Ni sul l i oiu1T it I i' hl Inen. i t i itl iinwticr - re t tie( fot r taisks whIti chI

v, ;-tn'u'i ii t I ch 'sioll ornsisteid of five 10 seconld itiervis lte cxlieritni(,tcr toldl the iihi-
ittiti i %t' airnh IAJ ( it.- recorded. Alphai wais genevratied by haiving, dl siihjects close their

- i" ' I ccrilt' iiitiuh :0 site-,: 01. 02, 1):3, I). CK3 anid CI. Thei 1-11K ami~ier wa~i
7~ ~ ~ ~ ~ ~ ~~~r ":n ring f0r 1;(,rfj~l of' initerest. 'i'he( I-"iKG wa;s saini-ii :it 250) li7.

lw 1;1- I 1; F O['l o! I I ( , o ii d s isen.Tihled a, at session daIt a hltch . Tlle I'll"G %eas low
iR iti 'o Ti!tle Ittlli rit. u-iill l dcIiiated hv a ft rwor of 2. Therelnlrtt titiec se-ries
1) ~ ~ ;l( ii- -!"dit -ita i i i For -:totlt rtiv itt ilt' iii orde-r nintiti 1b% 1~n he r ls est.
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A\IPiI( :\AIO\ NB)T IIIL ANXALYtSHS 0F HIOLLI'T 1 ICP( I E1NOM 'iN:

n~izo tanit, MIeniber. IEF. '.I' Hiroshi Niarushi ina

IHiro~'ulki Nlinol. Meniher. IFEVL. and Noriko Takeuchit

Dopjartniient of Electrical E~nginieerinig. C ollege of Engineering. llosei I niiversitY

I),,partnionif f I';le(trottii E~ngineering, Nippon En;tginieerinig C ollege of Hit'liioji

fiti aoji (1 tv. ITkyo 192 .JA PA N
+ Departitne ii of Ph ysiol ogy. School otNl l eiine .1un ten do Unive rs i v

llongo. Bu nkyo-ku., To~kyo 1 13 JAPAN

A B> I /?.1I( 'I- Ifli- article prset two ap~plicationts of hi-spectra for the analysis (if bloelectric philontiena Iltlel.'d

.ts filtorei imipuls pcsss the stirface electrotiyogratin and spontaneous synaptic potenitials. Lstiniatin of the cleion~l-

ttvav-orn ;lld the frejuency of its occurrei ce is iprntfor thle analysis of such if henomlena when thle frejueny,

.J l'u11,ietrY waveforu occ urrence is high enoughi to cause hecavy, waveform contatmination. Explicit expressitis of tOli

'1Ioent ary waveform tnd the frequency oft its occurrence ill terms of the power'~ spectiruin11 i hi-spec iii are first pr-

"Iit~ ile cf, ase I 1-t t lie wilvelorti occtirretnce timtes form a st ationary Poisson procoes. [lien the comnputer siminll

dIin *it rtt I o ppli aiilit, of the niethod for the anllYsis of hioelect ric' phenonmena finder coitiil,',tii [n . lo ('stitfldtiotl

4f TIP 0I''fIintar WiWorili ittaY be litilized afs a mieans of making tloninvasive diagnos es of' neurotmuscular lisorder and

-t iail oft thel freueiiy 1,f eletjentarY w aveforiri occiirretice mtay he appliedI to the analysis ofJ t fallsti itteor FelIeae atL

INTRJODUCTlION

\ iuiilwr 4f ;ijpli, anibh of higher-order spectra have beeti described inl the literature (e~g. references fin j li). %e would

Ilk' I, vill t\%w uor' -xiauipl' to thIis list. Onle is the( application to the atnalysis oif surface Eetrivgatlsll t

hr- that li ath li of spoitanlettls sytnaptic po teti al (S5~). These are hoth Iiio-electric phieniomtena miid(ll"l

, I- tr itlls' 1r,, -,-i-.poese obtaitied by randomt litnear superpositioois of elenientarY wav('fornl'. The filte ri

141 'V. 11r- ;if, "haar lotrizel by thle eletnttary waveformn atid the statistical pr((perites ((f eletietiit arv wavo'fortu

(trill . l1,iv o. tIwi hit t illittionts are imipiortanit for I Ill, anlalysis of phltotietia miodeled i., filtered imtpulse proco''s.

tal it , .t' iti fliett wavforiti (cciirr'tic ('tiso heavy. waveformn cotntatniitatioti miakinig the oI-SerafitI 'Io

<tI' fa'it IIIP "1011o. Virt we% wvill show)x thlatI i i suich ' asos wvitIl he a vY waveforti ( ot)ittuii at it ('5tlti itl( I ,1

it' otit iv wt'trI nd ill, Itmli lreqtincy ol eleltl'ttrY wvelorni rcciitetlc are possible htilivilig th li i-sp'tl

Ihl I I tII',- I titII;tiIIwt 1 ril to tr('it( ew oFrilt latol17Y P is', JI lo "ts hl we will p .It 'll t

hi.! I'" tl '.t Iith lit- .4 1o li ittniI- w p a tcd s nfc n o fl i itih L Il11



I IIfII I Fi r v. a-sIslm I hat tI IfNs i U I I,. I/. rim(ttit i x arial A( ;t ifl t hat %%-if 'd FI ill ) rrjit tile t- indt plj l-1litt

iI t u Ittt t I Ii It ItIhe ,S f I IIt i t iw t ttidr v (I t )ItI V it Iitt it IF I II th ilt, i i ii

,hr, I [~l.hi, i)n4 li, t ,do / n \(" I FI; .>hi, Pr-- .res (.

I rtit si 2 2j.,III tII iti ;r itr tIt rde r a titl c(rr,tt II if1 hit I III is ItIlivcl Iv. o~allat ing

Illt it, l I Ici ~tt~ I *ae whore A\( Fis als t s It I t, II pr e. sjEi3F g iv the clii iid 1t IPbA ;ttlt ,I pto 11jtt

f II i, Iit I f ; kit it I, oxjpeta t ih i oXe r tIl 11 iit I t 1 j~ws gtve to t l plt' illit ti m i t I Ii r ;ttt r al 1 iII lit 11 Iti

-i It - . .\sttiIti -I t H.,t Fa i a ('011.t1 ltt i F St aIt i ary% randnI it)fi jrk(e~ss it tl I ft, 1 >t1 % Ii t it I( ' Ikt I i I I

1 1ht-rih~ ill trd, lth "i itlt i fntions I all ,ktaed ildillt.p' t ctll [rei ft dul lI-( ptwr stic a if,

i- X1 ' ii- r, I I t Ii tV wilthti t ii- "S 5F 1ilItv

I di1r-I tiutoll" pr- osses arte characterizedk ant lvirttitwar v wiveftormi /(/ , it, itittjiltilie list rikliiji anditt

iii' -111 h tatistical lriltrw (I k(I F ill tit, Itlv tochilti( c-as'F. 1The f[rwair Il-no 4 filirI illltil."

14t I - , 'I.1ti-a. t hat of vj lessilig stauti-lii> like ainplitutie rlistriki n. pJ%%or pet ri (r kt pjetrmn ill lentil

-ItIh, ifiji . ( I ;,I, t I . i i Ia r I l ittvr I I i rl, 1I t I i t u of fi IIthIi I g , 1) cI ci exjn t in- 1 l .11

ii i V-ii 1 4 1 ;it nt P . In if I jrvitk~. o,-t I it wka-, shtwn tfIhat thIe join, (lhatra(ntorit i fttttItjtt 4 iny 'r-r is

I-I ri h I li tIint fithe trllIjie lF FuantI \('I. Iltit tlt essenttial frinard jrohllnnt xprssiiiv aittiltrar.% ,rdo alit

rriaii futn, in mid sftrill ill tomii> (f ItI tripj has th soItitini . ill ilir' sinnijilt atl~ whi ~il) alii Ii

(1111 IA 1111~ if hF 4 , Flj 1- ( lit ' ts - i i n

k il I- I -iJ I hF.% 1 li 1 f

it -- it t m p m Fii i ll. I, <F~k m I I, ijto m th I , %.w - m phti~

11-t I I lip'll't I'll,, It, appk, 'kil, -it I O w - 11 o l il o j 4 ) i ,, Ih



-I I Il 1' A'., to it N i I , ixitiri w-~ ; t im '' I-iur cirk a I (,i ti i I ---> nwaiitI II If tttui tit xiru l i th 6it

I I v .

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ li Ittl "I I" 'I til[,, iloi I 4 il" t la o lilII

xi,- 1 ' / It . 1 t ro t ,l lI ,ltI F i(;N . olI I 1

A\ ""M 1 11( 1 r f] It I IIll~l 14 o , I filcle illliike I I, I - I t- 111 W ' it F 11 i Il

,it l fi I\il d llF I II 1Il f 110 i l M [ l : 0 2 II ) N iv tI ;F ,I , 1 I t-l1 11 % i l'Iill o l

ila I t ilt II l Jjt%%ifIli l',, Ia. 7) ild (" NI~r a plod !, IIt daa4 A l'0l 11 -ri

1 1 it I t ! I I ii i



I IItt P I I11 , II I II \ l ,fI II I, II I F I k -1 it k11 11 ; I S I 0 1 *.I'II ll

I~l\ m I i I'-I' ~ 4iIIl' I. I It I I F'I n- e I rII r, it lrv it rIt; I% v I aI I ( i xq I !. IIIII

'1~~ 1, - li [ 1 1

I~~ I I as in IF I.iw '- Imm' I t m it u iii* m' Furrn. I F i mpal2s a t 2 11,,r oxaii, i4 t ill' iri,)l-I t%%1,i

Ilil '11 ati''a FlmI1v 1''''' t 1- i(4ul th n mb r J .,'gIV ifi u iti wI t

t- 1 ' 1l t , w Fi tI f 0 1 11t I t tIrl FIIt I) NV = %O; t F /Is) fiIH II t

2 C~1 % t t-4 il i ,Iw a 1 FI1 e ('t(1 ( itl% ex 0 .. I"(I) - , I.- / - -f

4 -

i i0 0 'D

1 r,

It ' t ! r'1 i l - i1i x f , il -i-' It IIi If I1



Too -

3 r1 Z r- 0-- 3~ - -

- , ! i li .[ . I i ' % l . ; a i( l , 1 , l t t

,I 11W0 Il 'l 1 Al~ lt M I" 1;1 1



\( " KN .1\ )p"W ! Ni :

N ii) n 11 IRgIux -r. Bjtrum lK'tiiai i: A\ Digital S igimil I'rou inpIg Franwwxrk." I' IFI P.

't itliI ' lihi rind Ili I lijil-sx' t~ jpp V)7- 102. 1].,o\ r. Vi') I .

J\ it I I 1-ii~ m a It . N' Imi ; %. 'I*jH. t, Ili . I- I; / 11K l I. vi la. , 1 ' 11 11 -IM

7; ", fn 5. 11. L 7[ 122'). J . j177.' .

N IIi' itr IIIiln ,I s iL 1 7. W l\. Y
't I *, i t T, I. I i,- l I r i{'t, i.-. it ' ll , A' I

I~~~ ~~ T ;~.7

N .i N i 1, k~kkw ii N. iiytu . I ii)f ~ji

7 I I I . h m lli I ;t172))F)olrl. PI H7

I ii s- iI ) I I it -Y IiAi' m lid Ir . - 1 it rulill I a ins iti vIi f , I i I I NI.-

i k/f I ) i I I -II I .i. ,1 v il) N I "'I lial .l % . lii'i 177.d



EXTRA("ION OF INI)EPENI)ENT SOURCES
FROM CORRELATEI) INi-TS

A SOLUTION BASED ON CUMULANTS
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A BSTR A UT

We propose here a way of extracting independent sources from correlated inputs.
The only hypothesis made is that the unknown relations between inputs and sources are linear, but that not more than one

source is gaussian. We show, the impossibility of extracting sources by only using spectral analysis. and make that extraction
possible by using equations which rclate inputs and sources, based on the cumulants and cross-cumulants of the inputs.

1. INTRODUCTION

The characterization of independent sources occurs when one studies the data obtained in an array of sensors. We generally
assume that the relations between sensors and unknown sources are linear.

In order to identify the sources si(t), at frequency f, we select sensors and try to extract some information concerning
independent components. The common way consists in forming the spectral matrix of the sensors, from which we can extract
the number of uncorrelated components q. Since the way of determining q has been largely discussed, through the use of
different criteria I 11, we now assume that in our situation, the information of the number of sources has been extracted.

However, a complete determination of the unknown sources requires more informations which concern the relations between
sensors ans sources, or between each sensor. The former type of relation has been largely illustrated by Bendat and Piersol who
use a particular decomposition of the spectral matrix [21 and obtain for measures a new basis of uncorrelated measures. However
this linear decomposition cannot be successful if each sensor is a combination of several sources.

The latter approach, based on relations existing between sensors, is possible assuming for example the plane wave hypothesis
In our situation, we cannot hold such an hypothesis. From a larger point of vue, the introduction of supplementary hypothesis

is necessary because the number of unknowns (the transfer functions between sensors and sources) is greater than the number of
equation,, given by the spectral matrix.

We develop this aspect in part II.
Since the lack of equations is assumed, we introduce the cumulants and their properties in part II, and propose in pan IV

supplementary equations based on the cumulants of sensors, for completely identifying the model.
In part V, we develop the precautions to take to obtain a good accuracy of the algorithm which minimize one function of

cuMulants.
Part VI show:, the results, with real signals, in the case of seseral independent sources.

II. MODEl,

We co nsider from nov, on the model at frequency f.
.S1 = (S Il, .. S,(') is the vector which components are the unknown stochastic non-gaussian independent sources.

X= X(f....X (f)) is the vector of sensors.
T i is the matrix of ransfcr functions between hand S

X1 I I S ( I)
The determination of unknown sources generally uses the properties of the spectral matrix of the measures,
Wc asLimC that the data are stationary and estimate spcctral densities with averaged periodogr:on.
Since p -> q. the interest of the spectral matrix is that the eigenvectors associated to non-null eigenvalues determine the signal

s'pace, I fmvver, that signal space can he successfully determined by using only q sensors 131 chosen betwkeen the previous p.

So the Tnodcl (I is equivalent to
X = II S 21 w hre X is a vector of q sentsors
If is q ( q tnmatrix of trnsfer functions between X and S.

c must he avware of the tact that with this modelisation. it is impossible to obtain exactly the signals S, transmitted bv the

,,iur>.,\ sireipic way to see that is to apply a lncr transformation at one source S, ,as S,(Lfi gives H S,ft),= W, Li) and to see
IhIt wc pi hlent i,, exactly the ,amc if we rcplace S, b' W. 'Ihis cnahles to consider the problem with real sources.



From the model (2) we can now exactly extract 2 submodels (3) and (Y)
ReX Re(H) S (3)
Im X = Im(l) S 3')

Considering now (3) and defining G=Re(H) -1, since we cannot access the magnitude of Si, we can also fix for exempic
Gi= I _iq.

The model to identify has now q(q- 1) unknowns.
The use of the spectral matrix brings some equations concerning the uncorrelation of the sources. From the sensors X, we can

extract a new uncorrelated basis of V, related to Xi. The family of Vj verify
E [V,(f) VJf)] = 0 V, , 1 _ i _< q-1 Vj > i
The V - are now well known, but are not necessarly the true sources.

This is easily explained by the fact that the number of equations E [Vi(f) Vj(f)] = 0 is only (q(q-l)/2), and the model to
identify has q(q-!) unknowns so the only use of the spectral matrix lets q parameters free.

The identification of the model (3) is complete if we can define ., other q independent equations versus the Gij.

Our purpose is to define equations translating the independancy of stochastic sources, by using fourth order cumulants.

I1. THE CUMULANIS [4]

111.1 Definition

If (Y1 ... , Yr) is a r variate random variable, the rh order joint cumulant C [Y1 ... , Yr] of (Y,. ., Y) is given by

CIY 1.  Yi = (-llI
1 (P-I) ! .l-'Yj} ... Jif

where the summation extends over all partitions (v1 ... , vp), of p = 1 ... , r, of (1 ..... For example, if X1 and X2 are
two random variables, two partitions may occur :

one withv=II],v.=(2),onewith v, = {1, 2}.

So C[XJ. X2l = E JX1 Xzl - EJXtJ EIX21 is the cross covariance function oi X, and X2.

111.2 Main properties of cumulants

- If any group fo the Y's are independent of the remaining Y's then

CIY: ... ' YJ = 0. Particularly, if two "sources" S and S2 are independent

C[S 1  ..... S11 S% .... S21 = C[S p, S2J =  0, V(p, n) e N2

p n

- If S, is a zero mean Gaussian process,

CISi j = 0 %Nith p > 2.

IV. SOURCES IDENTIFICATION A SOLUTION BASEl) ON SEICNI)

AND FOURTH ORDER CUMULANTS

IV.i Definition of the system to identify

We consider again the mxel defined in (3):
S = G ReX with G,, = I

This nmodel has qq- I) unknowns
It ttle mxel matrix builds an uncorrelated basis from the measures X, =I .... q this uncorrelation can be sumnmanized by
C2 = 1'(S. S.) =0 for i = 1, q-i and j > i
Those equations are versus covariance, cross covanances of measures and the unknowns G I Thute qq-l )/2 new equations

arc indepcndent it the ciherence between two any different mea:iures is not 1. Assuming this hypothesis by an appropriate
,clecti n)f sen,,ors, there remain q(q-1 )/2 parameters free.

'Ihc ,,: q 1)/2 degrccs of freedom can he cancelled by considering any equations using fourth order cros'- cumulants.

C f Cum s,. 5,. S. i =Turn FS, = 0, for indcpendent sources S,, S withi= -.... q-lj=i+l .... q



Any C-1, is a non-linear function of G~k. G11, and fourth order cumulants and cross cumulants of Xk and X1, for K = 1,..,q,
I ,q

The new, system to resolve has now q(q- I) unknowns for q(q- i) equations

C, 0= o I =' 1. ... qi- i+l,.q (4)

Resolution of the model (4)

Because the model (4) is composed of non linear equations, we simplify it by defining f4 = C

we contract the qI(q- 1)/2 equations C4ij = 0 into a scalar function to resolve f4 = 0 under q(q- 1)/2 constraints CQj . This is a

classical problem of minimization of non linear function under non linear constraints.

IN .2 IProoerties of' the system of eatiations

1%'.2,1. Existence of' a solution
It is clear that the researched indepe:ndent Sources are solution of the model (4). However, one can notice that there can exist

solutions of (4) which not correspond to independent sources ;this could be the case of sources identified such that

Q13 j 0 , C4 ij = 0, C6ij ;t (Cum [Si Si St Sj Si Sjj)

Such an uncertainty can be raised, by testing the 6th order cross cumulants of estimated sources j, gj
Lets notice too, that the contraints Gii = I are a way of avoiding non-null solution for the Gij verifying (4).

J.Y.'.2. Lniqueness of the solution
Fro, a model q sources - q sensors, we can extract q! solutions of sources statistically independent at order two and four.

The reason why is:
if ... , 2. q)T is solution of (4) , with

(=6 Re X)

where 40~) are the estimated matrix of transfer function between sensors and sources, th-it every
=( cyi ... g(q) ) T

will be solution of (4), where (Y is a particular permutation on the ] ,...,q. So for a given solution the model makes q!
solutions exist.

A c:omplete identification is only possible if we have a priori knowledge between sensors and sources, for instance "sensor
is principally related to source i.

V. THlE ALG~ORITHtM

A. Normialization of the rtiasurvs

The impo~rtance of that normalization deduces from
- the accuracy of the different steps of the aicprithni of minimization under constraints.

2- the etimajtiOti of the cumnulanits (bias and variance)
'I h tiN, point takes ito account the faet that initially it is beiter to have miagnitudes of the function, of the constraittts

We( )nos i k the secon uPoint ot v u : the c umulants are e st ima ted with Von rth ordler no ments

CUNIii\ X1 \. X11 f[X, X, Xk Ai fix, Xj fIXk X11 - f[x, Xk] fiXXij - ' ,X X11 fi[Xj xk
I".( [ X, \ X, fXki iXul

,roj Jn> ire mtC c>'iiie (1ar'd ci~'u~n 1 1ic,2S.
'I l~ c~I i I ciflhi) 't\ iN lnipuuct allv unhiaiscU1, anud tor 0 . I k 1. und XI2ou'i~;

ll1r-l 1 TI 1Ii, c (,'.ki- ot >,cwi or, p,. ii1 tTc 111iTi I



Re X is transformed into Re X1 
= A Re X

with A= 1

we resolve (4) with the normalized sensors : we extract _ such that

'=(Re X,) (A) (Re X).

VI. RESULTS ON REAL SITUATIONS

VI.1 Identification of two independent sources from two correlated measures.

We consider the situation of 2 machines sl (r) and s2(n) vibrating at the same frequency f.
They are assumed stationary ( this has been verified with a time-frequency representation)
We consider a data length of 8192 points, and make st(n) growing during this time. Then we build from st(n) and s2(n) two

measures xl(n) and x2(n) such that

SxIn) = sl(n) + s-(n)
n )s2(1) +(0 s In) (fig. (a))

xl(n) . . X2(n 1.

fig. (a), Currelated measures versus time .'ne source has been growing during data a , aisition

Our purpose is to extract from correlated measures at frequency f two independent sources l(f), and 2(f) to show that only
using spectral analysis does not enable to extract independent components from xI and x2.

Moments and cumulants are estimated at frequency f, with 32 averages on non overlapping 'lices of signal (length of a slice =
512 points). The minimization of the function of cumulants under constraints is obtained from a subroutine of " Harwell

Subroutine Library". The algorithm estimates l(f) and 2(f) versus Xl(f) and X2(f)

f 'K(f) = XI(f) - 0,97 X2(f)

t S^)(f) = - 0,29 X(f) + X2 (f)

Wefind Si =SI and A =$2

Figure (b) shows the power of the estimated sources versus time. We identify the varying source. The importance of using
fourth order cumulants is shown in figure (c) and figure (d), where are shown the power of the uncorrelated bases at frequency f
(xt(n), x2t_,_(n)), (x2(n), Xl12(n)), (x21 1(n) is the part of x2(n) uncorrelated with xl(n),x1i2(n) is the part of xj(n) uncorrelated
with x2(n)).

5 e source.

i' , P :) t'r versus time of the exit ,nted ,,ources SI et 5

£2 ij\ the nar~ ing ,vurce.



In figure (c), because xI(n) and X2lI(n) still grow versus time, they can't be identify as the reasearched sources. The same
conclusion occurs in figure (d) with x2(n) and xli2(n).

Power versus time of x2 (n) Power versus time of xj 2(n)

Fig. (c) Power versus time of x2 Jl(n) uncorrelated with xl(n). Fig. (d) Power versus time of xl2(n uncorrelated with x2(n)

VI.2 Extraction of 4 sources from 4 correlated sensors.

We build from S1(f), S2(f), S3(f), S4(f) independent sources at frequency f four correlated measures Xi,X2,X3,X4 and
make one source grow. We assume the hypothesis "source i is principally existing in measure iC.

The measures are related to the sources with:

XI = S] + 0,2 S2 + 0,3 S3
t X 2 = 0,3 S1 + S2 + 0,5 S3

X3 = 0,1 St + S3
X4 = Si + 0,2 St + 0,2 S2 + 0,2 S 3 + S4

4 independent sources related to the measures are estimated with the algorithm of cumulants following the model

1,06 0,21 0,25 -0,10

_= X with = 0,36 1,10 0,46
-- =0,10 0,07 1,64 -0,06

0,29 0,29 0,22 0,98 /

Figure (f) shows the power of the measures versus time, and the sources estimated with cumulants. We identify the faulty
source and conclude that only S3, principally related to measure X3, has been growing.

F ,o

A A .

l '0 I r) 'w(l'r vt'rIs Itff(' 'Jf lL X ( , 5',n,. ''Pl) , n , vpnct ton ,t

Cr.i



VII CONCLUSION

We have shown in this paper
" the insufficiency of spectral analysis to extract independent sources from correlated measures.
" the identification of independent sources using fourth order cumulants.
Such an algorithm including second and fourth order cumulants opens a new field of research in multidimensional array

processing and in other domains where we can only access correlated inputs, and not independent compont:rts.
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ABSTRACT estimation of the noise field [2]. This new
method was based on the eigenstructure of the

Higher-order eigenstructures are investi- autocorrelation matrix. In this' method, eigen-
gated to estimate the direction of arrival of a vectors associated with the smallest, positive,
tonal wave impinging upon an array of receivers. eigenvalues that are generated by the indepen-
In particulai second-order sequences of received dent, identically distributed (i.i.d.) noise
signals are generated by convolution to enhance field are orthogonal to the space spanned by the
detection and estimation by such classical meth- sources. Then a simple orthogonality test allows
ods as MUSIC. The method is most effective for us to perform the multiple signal classification
such troublesome cases as low signal-to-noise, named the MUSIC method (i.e., the "first-order"
coherent sources, multiple sources in close prox- method).
imity, and low number of receivers.

Further developments included the study of
Simulations show that with the same signal- estimators for the location of sources [3,4] and

to-noise ratio the MUSIC algorithm for a linear the use of likelihood methods for the detection
array of thee receivers is unable to distinguish tests of the number of sources [5,6]. Fully
between two sources which are less than 4.5°  correlated sources were dealt with by spatial
apart while the second-order algorithm detects smoothing [7] which was compared with the classi-
the two sources with less than 1.3° separation. cal adaptive beam formpr, [8]. 3ther progresses,

to nam0 i Few, adaressed different noise struc-
In general, Mth-order convolutions may be tures [9] and improved resolution through the use

made of the received signals which are Fourier of Toeplitz matrices [10].
transformed and appropriately multiplied to form
an Mth-order spectral density matrix. Similar to The second-order eigenstructure method is a
the traditional first-order (second moment) spec- high-resolution method to solve the direction
tral density case, an orthogonality condition finding problem. This method generates, by con-
leads to the direction of arrival. While the volution techniques, new data sequences, based on
theory suggests certain advantages for higher- the original array measurements, with a higher
order cases, si'mulations indicate the second- signal-to-noise ratio. Then, an eigenstructure
order method to be most feasible if used as an method is applied to these sequences, with a
enhancement of a first-order method such as major modification in the orthogonality test.
MUSIC. The new method can be used as an enhancement with

any previously existing techniques with few modi-
fications.

INTRODUCTION

The direction-finding problem attempts to Mth-ORDER EIGENSTRUCTURES
determine the angle of incidence uf signals
emitted by distant sources, from a sequence of Let r . represent a vector of random com-
measurements recorded on an array of receivers. ponents mea'sured at sensor i at different times
Though the potential applications are broader, t,. Subscript I refers to the first-order
the problem historically evolved from the two- sequence, that is, to the original measurements.
dimensional underwater acoustical case. The On the other hand. the Mth-order sequences
first, solutions were based on beam forming tech- r,.,(t) are obtained by the recursive computation
niqtips as early as 1942. In the last 15 years.
thr original work of Pisarenko [1] on harmonic r = r * r
retrieval triggered the start of a high reolu iM - iM-1 i,(

tion approach to the dirpction finding problPr where * is the convolution operation of the two

IResearch sponsrored by ONP Contract No. N00014 sequences that are present. If N data points are
81-K 0814 Mod P00005 recorded (i.e., rT. 1 is an N by I vector), then

15;



sequences r,M have length M(N-I)+I, and the Let r, represent a linear measurement of a

second-order sequences r,.2  have length 2N-1. signal vector sl = Is1 .... s. I I..... S,.N] as

In the frequency domain (ipper case charac- r =IAS 1 + 1 (1)
ters), a matrix of measuremen's of the array of
size d is given by where nI is a vector of i.i.d. noises, indepen-

dent of the signal sequences s,,,- Then, the

R RIM,... R.M,...RdMl 1 (2) first-order spectral density matrix DRI is given
M L'..... d]by

or, of good convergence is assumed, RI AIE [ I I] AI + E N N1] (12)

R FRM I .,M', Mid(3
RM I Lil l. Rdj.(3 or

The frequency arguments have been dropped for DRI = A1 DsIA 1 + 
0 NI (13)

brevity.

An Mth-order spectral density matrix can be 
where

defined as DSI = E SIS1] (14)

DRM= E [RMRM] (4) and

where the overbar is the Hermitian transpose. D = E NINI (15)

In (4), each element inside the expectation
bracket is the same as the elements of D,, but are the densities of the source signals and

raised to power M. In order to better handle noises according to definition (4).

these matrices, let a new matrix operator A be
defined as For the second-order sequences, it can be

shown that

AAB = C , with cij = ai, bij , (5)
1J D- A2DA DA-D

D2= A2s22 + 2Ni - N2 (16)

Then,
FAMI where

DRM = E (RR 1 )1 (6) A2 : AA2̂  (17)

defines (.)' ."
is the second-order scalar direction matrix and,

A A-exponential of a matrix A can similarly for independent source sequences
be defined as

A2 (18)

AM DS2 = DSI
eA(A) = Z A /M! . (7)

M=O As a special case, for i.i.d. Gaussian
noises of coefficient D2~

Then, let the Mth-order, spectral density, gener-

ating function be given by DN2 = F i(NN)A21 - 34, (19)

AR(t) = E eA (RIRIt)] (8) and

so that

DR2  A2Ds2A2 - 1 (20)
AI(t" = F J(I )M tM/Ml (9)

Mt Reference [11] features formulae that compute the
Mth-order eigenstructure for noises with odd

'ind moments that are zero, as well as a more detailed
derivation of Eqs. (2) through (20).

M0 DPt /M (10) APPIICATION TO DIRECTION FINDING

h', funct ion 0.. (t) generates the Mth order den- The first-order eigenstructure method is

,' atr, es in a similar way that the moment based on Eq. (13) where i.i.d. noises of density
-r rr,t i(; funct ion (generates its mome(nt: _'; the genvrating function is



DR1 AIDs1B 1 + 2 1 (21) 141)

The elements of matrix A, are: 
'2

A1(i,j) = e (22) 60.

whet: 2 is the frequency component and the delay 40"
i s 2 0

.ij = D sinO /c . (23)12 1 2 -5 -4 -3 -2 -1 0 1 2 3 4

Here D, is the distance separating sensor i from Figure 1. ORDER 1: 1 Source at 0*
the first sensor, c is the speed of propagation
in the medium, and 0, is the incident angle of
source j on the array and is to be estimated. 140.

Then, matrix D~,, or, more conveniently, the
autocorrelation matrix of the measurements, in
the time domain, has as many non-minimum eigen-
values as incident sources. The eigenvectors
associated with the multiple minimal eigenvalue
2 are orthogonal to the columns of matrix A.,i

thereby identifying the incident angles 0,.4

Likewise, the second-order eigenstructure 201

method is based on Eq. (16) or, for i.i.d. Gaus- 0
sian noises, on (20) which has the same structure -5 -4 -3 -2 -1 0 f 2 3 4
and rank as (21). Thus, the same eigenstructure
method can be applied tc the spectral density (or
autocorrelation matrix) based on the second-order Figure 2. ORDER 2: 1 Source at 0*
sequences and to matrix A. with elements:

-j~j 12 -jQ2gij  corrupted by Gaussian indepenoent noises. Each
A2 (i,j) = ij, = e (24) source signal consists of a sum of sine waves of

different frequencies.

where the delay becomes More impressive are the gains in terms of

2 =( )sin c (25) resolution, defined as the ability to distinguishij= 2 c two closely spaced sources. Figures 3, 4, 5, and

6 compare the resolution of the first- and
When compared to (23), it becomes apparent second-order in the case of Lwo sources separated

that working with the second-order sequences is by 4.80 and drawn closer to 1.3° apart. Signal-
conceptually equivalent to working with an array to-noise ratio conditions are, of course, identi-
of double size, with sensors spaced at distances cal. These two cases are a limit of the resolu-
2D of the first sensor. tion for each method. The net improvement of the

second-order method is seen as dividing the limit
Therefore, for an array tuned at half the

wave length, if the second order is performed,
grating lobes appear due to a "conceptual spatial
understanding.

Typical improvements in term of the detec-
tion of a unique source are shown in Figs. I and
2. The second order shows a lore definite and
thinner peak. The gains in ter:-s of detection
are difficult to quantify since it depends, to a _ _ _ _ _ _ _

large exttort, on the criteria of detection and on
the type of sotr(e si;nals used. Nevertheless,
as ser by this -,imp) example, gains are quite
s ident.

hroughout ,, ,s otherwise spv( ified, sim -3 -2 -1 0 1 2 3 4 3 6
liat. ion is perforr.ed us ing a 1 inear array rf 3

sensors, s-paratd by distances D from one Figure 3. ORDER 1: Sources at 0 and 4.8*
another, rr(c ordinq 1024 inapshot s of t h. siqna s
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Figure 4. ORDER 2: Sources at 0 and 4.80 Figure 7. ORDER 1: D 1200, Sources at 0 and
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Figure 5. ORDER 1: 0 = 600, Sources at 0 and

1.3° Figure 8. ORDER 1- D = 2400, Sources at 0 and
1.30

__ _ _compared. Thus, the second-order method does

Z!= iperform better than an array of twice the origi-

nal size.

I Figures 9 and 10 show that the improvements
1~AY~0r , offered by the second-order method are sustained,

even in the case of a 50% correlation between
source signals. The second-order method can beviewed as an effective tool to fight coherence byoffering higher resolution.

-3 -2 -1 0 1 2 3 4 5 6

Figure 6. ORDER 2: D 600. Sources at 0 and
1.3°  20f0Cm

resolution by a factor of 3.7. Note the high Ar6
peak in fig. 5, when the first order is unable to
di.tinguish both sources. Bias is present but is
always opposite for the second-order when it can
be comparo.d to the first-order basis. This miqht
provide a criteria for further precision. Cor--
respondingly, Figures 5, 6, and 7 show the
reult; obtainfd undpr the sam- conditions by an -3 -2 -1 0 I 2 3 4 5 6
array nf twice the physical size. It does not
rompare to the "conceptual" double array case of
thp ,er. order. Only in Fig. 8, with an array tigure 9. ORDER 1: 50% Correlation, Sources at
four times th original size. can the results be 0 and 6'
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ABSTRACT

We consider a N-variate random process consisting in N (or less) independent components corrupted by additive noise.
lIcnif,,ing (or separating) these components without any a-priori information about their structure (blind identification) is theorically
po-,ible under the independence assumption. We propose a blind algorithm based on second- and fourth-order statistics. Its main
feature is the use of tensor formalism allowing blind identification to be performed as a generalized eigen-decomposition of the
"quadricovariance tensor". All non-Gaussian components (and possibly one Gaussian component) are separated even if they have
identical probability distributions. Simulations in Array Processing context are included.

INTRODUCTION: SEPARATING COMPONENTS.

In this communication, we present an original method for blind identification and separation of independent coinponers in a
multivariate process. Finding components or "unmixing" a linear combination is a rather general problem, and var ous solu,.ons are
available, depending on the nature of data, on existence of a priori information, etc... The originality of our method lies in the
processing of higher-order information which allows "blind" identification. By this we mean that no a-priori information is needed
about component structure or, equivalently, that the method des not impose any special structure on the components to be found.

In order to illu-,trate this point and to introduce our work, we brietfly review here two methods intended for different i.ontexts: the
first one is the Principal Components Analysis (PCA), a common tool in Data Analysis, the second one is MUSIC aiming at source
localization in Passive Array Listening.

Principal Component Analysis.

t. incipal Component Analy'is (PCA) considers a N-dimension random variable and operates on its covariance matrix. Projecting
the variable on the N covanance eien-vectors yields N components. These components are orthogonal in the geometric sense (since
covariance cigen-vectors are always orthogonai) and are ,;hown to be uncorrelated. PCA is of general use: it can be zpplied to any
multivartate process, regardles, of its structure, because it does not rely on an a-priori process model, but only otl the covariance
matrix. This v.:rsatihty has a drawback: if a process actually is a superposition of non-orthogonal components, PCA is unable to
idertify them (and does not claim to do so!). So let us give some attention to a technique able to find actual (physicall. nmcaningfull)
ru fn nc'. r.y IF]) n,,i .t l un mpI ',Jt| remusy.

High Rsolution Array I -ocessinz.

In l'.tivc Array li,,tinig. the ,-d inincin proxcess tinder study is the output of a N sensors array. We consider the simple case
,.h:rc di,.,rctc uurces ire indc )endcntly emitting narrow band signals. Process covariance is then a simple sum of the contributions
ch -, ri.ce When pr p~rcain in conditions and array geometry are known, each contribution has a known structure parameterized

r, xatrnm Iscntmiall. high rcsolUtimn is achieved by cleverly combining inforniation gained from observations
T , ,if i c;/Ll I i in ktIlia suari crc ttiri x and a primri imf(orm atim)n aibouit cmliponent structure.



Blind separation.

Out approach to blind identitication is tntermidiate between the two methods previously outlined. We consider a N-variate
random process, hypothesized to he a Superimposition of components, but we do not ass me these components to have a known
structure, justifying the 'blind" qualificative: all information comes from data, and from data we want to determine the process
conlstitutirie Components. In order to separate actual components as in Array Processing, but without a priori information as in
ACP. we make an essential additional hypothesis:
components statistical independence. St .- 2 ;cal indpe-idcnc is a strong property. mutch stronger than mere uncorrelation which
is expressed by second-order statijeis. It is the purpose- of this COMM Unication to shew that independence. expressed through
Second- and fourth-order 'cumnulant tensors", allows the blind identification problkn. io be solved ii, a direct manner.

Preilious approaches.

The question of blind component separation bytligadva~ntaige of statistical independence has already been adressed in recent
litterature. A non-linear adaptive procedure has been proposed in 12,31 while a direct solution using explicitely cumulants was given
for the case Of Isso sources aInd tsso ,,ensors in 141. We have proposed in 1101 a simpler but less resolvent matrix-based miethod, It is
derive 01 not cxphicitelv) from the one to be exposed here by considering contracted cumUlant tensors. Much work have been to
Cx ploj t hie hcr-ordc r in forimm on in S pectral A nalyvsi s or non -minimnum phase identification (15,6,71, for insianet but the link vith the
prcentm pr))hlcli is not vers, direct: 'tationnary timne processes are usually considered, 1lence the "components" are complex

'kt,4 !1s 1'1.il it! A Ii t1 k)Ihe noti on 4f polv-sp, r s.) which are indeed of known structure. Some authors IS 9) use hi ehIcr-Ordcr

1:Pr 1.ultiv~iritc pro cclcs but again tlhi'. intorinition i suall coupled with a-priori informnation ( generally an harmionic

BLIND SEPARA~TION OF INDEPENDENT COMIPONENTS

Process model.

We con,,idc, a N-variate complex stochastic process, consisting in the superimposition of M independent components w ith M <N,
and posibly corupted by additive Gaussian no~ste

Al

I[h tiructure of each component is then determined by vector Xwhich is deterministic while (.),,is a scalar stochastic variable. Each
ui, i, tat ilticaliy independent fromt the others and indfpendcio from the additive noise B. In addition, we assume that the noise
process B is Gaussian and (in analogy to Array Processing) ''. ially white" that i-'

2 1 R, ~= E ( B i£' = U
2' /.

. hcre / deniotes he idecntity mnatrix aind (72 is called the noise variance. As fired vectors X., htceieifuneo ie
)'))rhponcnt. we shall call thinl comnponent steLnatlres'. While vaiPIes axp rom~ h tcasi ato h iocess. are oitje,

refered to ais ''the sie-njisl

Iduntilication.

Stairtiine, wlI trou prixes'. observation, the Pr) ilem skc jadrc'N is: the number of componet.,, and noile .ariance heine,
o~ki:))sn.i~ln I urkn('.sr. lenatuie'. X,, and sepairate (Yiakt,.- Vtefnre iZOiiiC further, it should be noteCd that1 exehanec Of- a scalar
,~i~v lt sw and (1- leases, the procc-~ e' -n ) Ist uncrianuecd Henicc, in thle followine, wht s alled'opet inaic

jv'tcrl"INX,)i Pj o I he tii))crl;4)d j, V )ctcr'inBt :i iii to j s faltylor . bcause this IS definiteis the ie'.t thul -.in P d01W. In
h;1 I [4q 1. i, all iWi'O ',.I'*rr 0n each si-ii~iure still allow's signOal separaitlion

Rudutied ittodc t In )'Olcr 1)C"po inij resuil I l inska polsihle. we shall dense them iri a reduced insil ile Vte ,
-' 17 i ii fI :tpiltV'~t %ksc t-iwi tl)!C h o 0)) , t C isl present 07'd that prozess W-'t~Iiiiii5 i l to 111c

t~~~ ~ ~ '\ l" t.c AIljcl l)



IGH(1ER O)RDER STRUCT[URE.

Thi" secti1on briefly introduces, rensor notanuns., detinc second- and fourth-order curnulatit tensors ai~d exhibits their particuliar
~:utr hen proce,,s t hlo% " mlodel ( M!

h'nisor fbi at ios

(~ml~i~s ~ixbe Jiled as cocff'iits in thle Taylor- series ex-:''1sion of the second characteristic function [I]. As a
t~qe.C rnl!i:r~t procc\,e., firsi,- and second-order c~ru'fllants are vectors and matrices respectively arnd higher-order

culiid~ric> have to be rcpr-cscrtcd as tens ors. In thle followk inig. we use a simplified tensor notation: a column vector X is represented
h,- the indexed quantity. l.,, i =l IN whiCh is juISt its i-tb coordinate in some orthonormal basis. Notation does not differentiate
colunir %cctors, fromn line vectors. so that complex conjugate vector X1 is represe .ed by-vi*, i =1,N where the star denotes complex
COnIJLIJICte If a nmrix A is, represented by the doubly indexed quanilty a,1. then its transpose conjugate is a,,, and so on. TO make
eq;Uations' more readable we also use classical Finstecin's summation convention: an implicit summation is to be understood over any

index appearin, wc in a gisen tcrm. For instance: 0cstands for Y_ a x1 and trace of mnatrix .A is just aii.

Cunmul tnt tensors,.

In thus ,work, we only consider second- and fourth-order statistics. We define two "cumiulant tensors': the covariance tensor
(,Ihich P, noihiniz but thle cov.ariaiice miatrix) and the qluadricovariance tensor. according to

-~j Con ( _t, , ,Xk 'Ni)

13% con trucrion, ci is an nc enjoyvs heriiti an s vnime trY:

Iwhich is, an c\ cntial pro)pert> since .. allows onihoc)onal cigendecomposition. as well as factorization. quadficovariance symmruetry
pr peteirc mu rec hil frplte use wve onyrti SVmnetry analog to (5):

ojk = j

Let U, explIicit thle CtfeC t of aj line~ar transformation on the data. We denote xi the process obtained by linearily transforming original
pr ,-i hrorugh mati i\ a!a:oriztI,=qt 'Fnkto linear properties of curnulants, the link between cumnulant tensors of

:21.5o pr(KCesC is jut:t

r,,, u,,,

i bwl /r,,p el ( 1,,au,~} ,k (1,,

(junnifiant tensors structutre.

14c inmk erv cumuulant tensir struciture in. terms of' model parameters. 'To keep notations simple, a concise notation for
-r1nilrt, eCtrs i liteul the i-th componenC~t of signlaturex 1, is denoted p. With this notation, reduced mod--vel equation I3) read":

I ~ ~ I r n-duirci ~ ;ir rind ni variable ttr, is described by its 2-4-order stiic:variance aT lnd kurtosis it, detined by

(uCln (, U U

, .:.;u .i.1 (111crIs h inearity iu t (lniliLtnis anid us"im thle lat thait Joit ciumuiulants ot

T~~~~ p.. I , p.1.:

:d-) si I' sJL ',' 5.A I A :i:.e *u) ..



SOLV ING COUPLED 2-4-ORDER TENSOR EQUATIONS.

The proposed method for inversion of 2-4-order equations (10) operates in two steps. The first step is an orthogonalization
procedure and, in some sense. "exhausts" the second-order information content. The second step is a kind of eigen-decomposition
w here "ei-en-matrices" are extracted from quadricovariance tensor. These eigen-matrices are then shown to be the separating devices
we are looking t--r

Orthonormalization.

Covariance matrix, as any hermitian matrix, can be factorized (non-uniquely) into a product acccording to R = C Cr where C is a
(non neces;sarily herinitian) matrix. In tensor notations, this reads:

In model (M'), if signatures are assumed linearily independent, covariance is full rank so that C is invertible. Let us denote 11 its
inverse (hm emi = 6, ) and show its orthonormalizing effect by applying hki hhj to both sides of 10.a. The left-hand side yields:

and the righit-hand side yields:

hAh I*, ~ P Yo ,p*=Yo hk, f, h,*1 p; = _P'

where we define:

12) p' =o hij p1

IHence efi'ect of hon signiatures is to produce a new set of "orthonormalized signatures" since they verify:

(13) YP'kP'I* k1

Let us apply a similar transforti-ation to qu, dricovar~ance tensor. We define the orthonormalized quadricovariance q',, according to:

and the structure eqiuation l 0.b) gives:

q(151 Y= 4P P" P1j P k P

Orthorionnaluzed qualrinvaiani.c has a special structure: it is a SUM of N components (eq. 15), each of them being constructed fromn
a :mudc tirth 'nornuliicd signature.

Ligen-matric~s.

Ewcen-matrix of a 4-order tensor is the direct gen-ralisation of a matrix eigen-vector. We know from eigen-thcory that, if matrix
a., is herrmtian i.e. ved-fies for any i and j : a,, =a,*,, then it admits a set of N real eigenvalues Ku =1 ,N and N orthonormial
eigenvecti)rs u, anti can be decompost-d according to:

N
16~a, U, ~k U]

If eiuc -values are dis inct, eigcn-vcctors are iniquely determined uip to a unit-inr complex factor. We nlow consider
ipiadricovarianrce q1jk aS a line~ar operator on the N2-dimension complex linear space of matrices. As quadricovariance tensor ,erifies
an hkrniitian snn-ietrv (eq. 6) it admits ant eioen-decomposition according to:

A h':rc: ire - r,11 numhcr,, and where the rn,1 's are N2I complex matrices with dimension N-N Wt e ii rlyrefer to
ienlnotri,, of the tirsnr. We alsoi deduce from eiicn-thcorv that if cigen -val tis are f t.then eicen-

ir dcti':rnwu ieip ti, unit -nonn complex factor.



Solution.

Now the problem of extracting signatures from quadricovariance is solved by identifying the quadricovariance structure
expression (15) and symmetric tensor eigen-decomposition (17). Using the facts that signatures have been orthogonalized and that, if
an eigen-value is distinct from the others the corresponding eig, ri-matrix is unique (up to a unit-norm factor), we can identify term
to term the two expressions (15) and (17). In the general case, component kurtosis are all different, so that tensor eigen-
decomposition procedure will yield, for N among N 2 valies of m, N non-zero eigen-values X,,, and N "significant" eigen-matrices mi.;.
each one uniquely associated to a single component p:

Pp(18)tI ,,=ap , ,

[Mi] = z p i Pj

(z- is an arlhitrmry irrelevant unit-norm complex number). In addition, there are N 2-N remaining null eigen values, associated to non
significant eigen-matrices. Incidentally, this is where Gaussian components show (as expected) to be unseparable: they have zero
kurtosis, hence their eigen-matrices can not be distinguished from the N -N non significant ones. (As a matter of fact, this is not
absolutely true because Gaussian components are orthogona.ized all the same, so that if only one Gaussian component is present, its
signature can be determined as being orthogonal to the N-1 other otz).

Algorithm summary. In summary, blind identification of independent components is possible, in the general case, through the
following algorithm.

From data. estimate second- and fourth-order cumulant tensors (4).

Use covariance to orthonormalize quadricovariance (15)

Feed an usual eigen-decomposition routine with orthonormalized quadiricovariance considered as a N 2 xN 2 matrix.

Find the N nen-zero eigen-values and retain the associated N 2-vectors.

Consider each N2-vector as a N x N-eigen-matrix. These matrices being rank-one determine single vectors.

Un-orthonormalize these vectors: they are component signatures. Signals can be separated.

Full solution.

Due to lack of place, we indicate only briefly how the method should operate when some of the assumptions we have made are
not verified.

Identical kurtosis. When kurtosis are identical, non-zero quadricovariance eigen-values also become identical, and eigen-
matrices no long'r contain - single term in P', P'; but are mixes of such terms. Hence orthogonalized signatures remain identifiable
because they till are the significant eigen-values of quadricovariance significant eigen-matrices.

Number of components inferior to dimensionnality: M<N. Covariance matrix is then no longer invertible but its pseudo-
inverse ca i bt. used in place. This is equivalent to operating the method in the covariance image space (the linear subspace spanned
by signat- res v hich is also identical to the space spanned by covariance significant eigen-vectors).

Taking loise into account. With M <N and a noise model as in (2), noise variance is estimated from the N-M lowest covariance
cig-n-valuc, whi,h are equal to &. rather zero. A noise-free covariance is estimated by substracting 2 1 from the measured
ko,,ariance, allowing correct signature orhonormalization. If noise c: red Gaussian, it has no effect on fourth-order statistics
and the algorithm runs along the same line.

Many Gaussian components. The presence of N' Gaussian components gives N' additionnal eigen-matrices does not impede
idcnflitmon of the remaining non-Gaussian components



SIMULATIONS.

We present a preliminary simulation in Array Processing context. We consider a linear array of 4 equispaced sensors located half
a wavelength apart. There are two sources with equal powers located in the far field. First source has a 0 degree bearing and a binary
density probability. Second source is at 20 degrees and is uniformely distributed. Independent Gaussian noise is added at sensor
ouput. The separation is evaluated in terms of crosstalk rejection. After signatures are estimated, we construct a vector F in the plane
generated by the two signatures and orthogonal to the second one. This is intended to isolate the first source signal by forming F1 X.
Because of estimation error, this can not be exactly achieved and we define the performance index as the ratio in F X between first
source power and remaining second source power. First plot shows performance index versus signal-to-noise ratio (both in dB). The
three curvcN correspond to cumulant tensors estimated with 20, 200 ,2(X)0 data samples respectively. In the second plot, we show a
more difficult separation: signatures are closer, the second source is now !ocated at only 5 degiees. Space is lacking fore detailed
comments but separation ability is perfectly clear in both plots.

Sources 20 degrees apart Sources 5 degrees apart

80 -80)

dB 40 dB -40

.. . ........................................... --.. ....... . . .. .................................

- 40 020 40
Signal to Noisc Ratio in dB Signal to Noise Ratio in diB

CONCLUSION,

We have shown that knowledge of second- and fourth-order statistics expressed through "cumulant tensors" is sufficient for blind
identification of independent components of a N-variate process. We gave a constructive proof by nrofo,in2 a direct i'ienlifi-Itor
algorithm operating in two steps: covariance based orthonormalization followed by quadricovariance tensor eigen-decomposition
This decomposition exploits a particular hermitian tensorial symmetry, but we feel that identification could be improved if all tensor
symmetries were used. Although the method is quite general, we think that promising applications are in the field of Array
Processing where high resolution methods are very sensitive to model inadequacies, a problem not affecting blind identification.
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ABSTRACT The array processinig mietlodls have beein devoeloped uisi ng
seconil-order statist ics (aiitocoirehtioiis) of the( arraY data anld

ooe addres in this paper the hearing estimation problemi of assuiming that the additive nio is spatiailly w hite: i.., diago-
ii ri-es fromi ar ray i no asorenmen ts for signal en vi ron ments where I a spatial correla tion iniatrisx 'I ie( seiisi iivit S of t hvse mnet hods

Ili(, igii iloi-Gassiali andi like addtitive noise sources are col- to spatially colored noise has yet to he ijili ieiL. esociaillY in
ored (spatiallY correlated)I Gaussian with unknown second-order those scenarios where the( spatial aultocorl ai,r ilaiticix of the
statis;tics. [ he ESPRHIT hearing estimnatioin problem is refor- addiitive noise is uinkinowii or caninot be estiiiatedh accurately. .\r-
i iat ed uin g fo urth-iorder '-uitiiiant miatrices, in steau of anito- ray processing (or liarmoiiic ret rieval ) pirohlviis ill tite p~ivu-iic

coirrelat ion miat rice s. 1 v doinig so, the fourt h-order cuii ouIant iii - of spatially correlated colored iio hS iaw yeI eiI ii ldied a;vss ili ig

tri-ces (-f the additive colored Gaiissiart noises canl he suppressed eit her knowni noise aiitoccorrelat ion or ostiiiiated one( froiii sec-
and therefore kniowledgIe of the noise cross-correlation miatrix he- on1dary inputs [121, [1-1].
colieson mnecessary. SimuI-lation results are presented and perfor- '['lie hearinig estimatioin prohlemi frot array dat a inl tI, )-s
lia lie coiiparisons are made hetween the fourth-order cumiulilt-
h a,d 1SI ITand its equiv~alenit second-order statisti cs- hased (lice of spatiall y correlat ed G aussian ii ose soii r-es hias been ad I-

',orsioii when ilie ailditive noise soiurces are colored Gaussian woith drese i- [11),vepo-il orhoro uuaso i( i

11koxisailcorrelatioti matrix. snapshots instead ofaluiticiirlelatioiis. Ili hrliciilar. it wa;s sliosat
liiikijati ~itildthat the(- signal and noise sublspiace pri n ilsl g net IliP.

1. INTRODUCTION ciih aiyrfriuae stghoil- liciiilornti
prcesigsiinlation results were pre"'ited itlil iillpaisois were liiad'

prrcassin algoritlitis have( heeni fouind very usefull ill thait demonstrated the( itiiproced perfortilaticeof tle" folirtli-ord.-r
many aipplications cver the( y ears includinig those to soniar, radar. cliiiilant-hased methods over tllir equivaeiit iiitocorrveL,toii-
-oeophysics and hionmedicine [1], [23. 'Flite objective in an array iji esoi vin h diieniesuce eeclielCis
proceistg sce~nario is toviztitniate the niitner of sources and thei sia with unikniowni litot-irreilatioi miatrix.
hia ritigs rel ativSe to thle array configuration.- In cliie ilel n le clIas
of airray,, pro(--siiig niethiods are the convealiiional lieaiifitiriig. 'Ihe main motivation bhlind the use oif higher-order statis-
t'sina suh.space, ( iiAuoregressive, Nlaxiiin Normu andl Max tiics or cimmlants ill arrao, process ing Iprclliiis Ies.- ini t heir abifitY
iuuii Likelhloiod oif Capon withl their mifiications) ivi well as~ to suppre~Css noise unider certl-ili ciilitiiiis, wkithlii beiigles-

1w ru'-oiobp- Wisreiac'''IC ot-sc -ipio- ,r to know the exact prohialility dotisityN fui iitliii (1)(1 f) gov-
Ir it) in,,1ods [133:1 . vral papers, ha~ve loeti pubhlishied ill tit( i on the nise sllliles [16]. [17). Iii pat-i hihar. if ill' ailditivi'

ltiaii ro over I lie past di-cade dealing with the estimuation pr- no0ise has Calissiatillf, then ;1ll its, Cuiiiiul1:1uts of olI' gwa''

fFl atu ld ci illii altiiuial i-oiiiplesit s of the( aforenieeti ned thanii tsvo are idetitically .Zero [16 (i][I]. 'IHe( piirlios' of this pl
i~~ri~o1,-i~~li mehd.pr is to show ll vxt('iisoii if the( UShliffl, lbeariig- esliliiil'

O ne p o f the i m et l is. hi ' -- t o r a r c s ii proble ni usiing fou rth-order st ilist is anid l'-i o iist rlte it s pi 'fir-

one1 if hilc- 1;slolIst(MV popl'al -ohiititi array prsc lld1,ichi toatce wsithI sitoiiition exalills. (utlpiisiuts will also he unlde
t.'liuis hs eei thi' IU I brrtln i c cmd ~ii letwveeii th lturtli- aind secciiii-inei ,i;*1tl,5-i-,,I~ ISPI, I

hIc a-boeti show ii to yield asymiptotically iiihiasei atid efhiciejit aIg tli s
'-liii l it -~3l~i] uimnportant tiew applroachi to the he aring

i-u iatiiL pr( lletui fromi array data has recetitlv heeni lropom-di 'I'll( ciigatiizatioii of lie paper is; as, follows. Si I ion II 1111-

onI ti'. idil cif F->tiiiiauin~g Sigijil 1'aratn-ters via Ihiutatiotial mmaizes the( lirolliu formuiulitiioini' ;mlduiiuu. Ill '-tioii 111

lnvari;tuic' lodhili'lpie" I lSl'lt IT). Athoiig'l the. LSI'll II is Silo- il( hieISN'(II aigorithin liaxe-d in foiirtli-oruler taitsis' s

l~r M NI'tSI( 'ii ti r v o,(, a f Ihl tr .y I l t it (I i tt sicvl- epim te tli ,, (it I re iis (I itSi - alii1 its Pruill(Ir-I] I t'liii'lid 1-iitilatI 1 -- 1i:t.-4

P fly iiliu i - .fiioilt,- it *-Xlluils wuom verdalatag's over iinilparisots r ir il l~~ -- ''I iiS-u I\ , I- V.SdeN

'I tS( - ' Ihi aro-: (i ESIi'T exliiit blter perfor- ,,ut' oiolilii 'tiiP-

'j 'thm' NI ISl( for c,,-c~taiigtiud sceluarios. (ii) it doe" ido 11. PRE~L]MNIN1 XRlIFS )%ND) 1'IMBLEN
r klul'' ki-vI,-di,' of Ilie arrayv go-inwtrY. ;tsnd (iii) it. r''qpi cs sFO.M

,ompli,iuI'oI , Stt K !it ha.,s beil rehiorteil in [6], [hI)] thati

[,\%I j at ii'' I in Il for tlhe olihition if liaiii'iii rct rii-sc -ii'rs aniii th;tl Illo iil fromi . -) ii~sluiiii';

t'itioll i ' v om 11 sim 1



x~% I 'L, (xi-Jt~ I, -I } "~ !,1 (1)t (. Iin {fj.Ok O iii isth sitjg 1v' of p{c ationb

k -I ' ~ is the( all'i~' lt; lintl ix (if th l noiso solire, whidh is

1,......I asumediit(( 1(1 to Iw ,i Il(Jl-(iagonal matrix. Oti l i h r aud.

I l b- i lt Iaosc rrIIIi t l, I iii it i i i d;i a X ;iti d is give 1i-i ix

i h . fto ~Il'mi (;I- ia~ u ii,c 't of t w ilo.T llv l I i ~ 'v = ' (i, (.1! - x

-ii n ~ r }in s l- aiitiifl orl~~~l -t) i~ii 'hi itiNutic'. that if Tit, h'- o-~li(- { ;)t , spi5atially ,
tl ;1 i-iil ~ iliopudl'tt froi Tho sclrce signals. The spatial ii

k~~ 1,1.. .

Il' , the-10 1iit ft-1 i: I-ni of all >oilrie sigtoVl. d V i- I k

I otnliong tli -.- m'r-~b-.~t ii15 ~ la aih. aiiiiit-lai-d Illi-- 1 -; O l'tr I.l' IISIT H ;ilglithifiIla

V. f I ft-iforuriilatel usitot_ I_> ;Iii) L I.. i at tie 11, k,- stop :-I, t iri-

ildlossl-ii [sj. [9I

V I p= C I. aI! . ~ I (1 - I x 1 equa)l to (T.

r~qi.eal ilit:a con b-" vrilt-a . IU i tanxntI4 II a itit iii

{ .rpj k~} A ._ ... V

N.~A poz\S \; in tted (it! :it i t*0 is f~ to oj-r.,- dii 1 :

YO ~ ~ ~ ~ ~ ~ ~ ~~ te data ii~n.g %it d. Ii -til DI l-';

v, ,, oOne( of the loiin himlt iotia of the VLSI'1I F algorlitlit n

it s cotid-orilir ,,;, istis is that it will falil to Work well illi~

tI N, x\ I Jiretice of spati dliv cirr-latedilijsp sources; i.e.. whenl HT" is
tioti-tfiagott-dl atli hR: li;,s tior-Zero -letet beyond it., first silb-

l~t .-p~t; 1 - I x Idiagonal. If thieIiv ~ sorcos are Gaussiani. the afore-

order staistics.

B. FOURTII-ORDERl STATISTICS CASE( ~~ ~ ~~ ~ ~ ~t cal .-die1.1f~ ,x i;:xi Ow li Ilt oti-d--rI pitiilawi tii: i of t~ i r/;A,

F ii

v -. I-~im 'tif i. i .' . 'Iro l-!i C m

2 . ,. I



lifo aiil i%-( iois- mmo rces lire %liii' jafil spatiallx 11 icirr1ated
l j-~ k )x A Ai). -- 1, x k wtith S.NI. = 21,111. Ii'siiltx ;ice( Thoxii for 16 x :12 and GI x 32

daitalenqgthls. loiii this figuire 1 ii;ireiit that the oxiall poor-
S{k A)X 7: )1 1. xtk + 72 x k -t rj} fmroane oif thi. lSl'I~ll a: iitli %il iecoii in-r statistics

1- I{Xk)x(ku + } I"{xk rl )f r i) +'ii I ) I'h I I I))ill the~ iiis.- fIhat t he noise siihsjiarc C E'

fof ESPRIIT (2) are scattered closer i t die wrgjii. IHowever. both
F f 3 , 1. (A r~' - !, V 1 7 X -T )) ilorit hIl' "ol ts the tosvo clos lo, spaced soilrcres Suiccessfuxlly.

I l i fte :1- )r or4 I U- ii- :;It ti., til f ill ":t. A~ol Thle sane .o e t~l~,':gfials are iced il it, third examuple but

!. r , I , ,ol i I a,t--; P a) 111orli;I ti i~ ilt I wi a ditiv wliite (iatissiau iol-- siur c,- that are spatialy or-
:.I ri< f tl, :m d;I_ I, bIi ril;tei F ig. 13 shows tile perforimitic of ECSPIT (2) and ES-

ITPT11 I) algiotiiliis, for 16i x :32 111( G4I x 32 data length laid
S.NII 211d11 Ii .... Fig. 3. it appears that altiouih theO ESP'RIT

xi t f j () (2) algorithm re,,olves tilt two ci-eit does not -':p jros.s the
X Spa ia!'x corpolaiti d iioi,, wI icli o,-': as allot her oilie peaootk al

0 1 (e g. hif~l, (oilceitratioii of GEF's at the cross-ectioti be-

Y I J-1 !0~) x 1I/ I, i r .\is ano i nit circle.) Oil Ii ut hr haiud. ES PRFlI (4)

F; 11 al%.;_i il ilistiralec the ro>aO1- of an1 ixattipli' %o.i-re t he
L) Iiis 'oic' lo, (;lli -siaIII color ;l, .l~oit llv iiili.alod. ile

.okiiice s t ; [I,, O1 ;Ilj he- ii' l. I lu- ;ilol )N'\I? = 21)11J1. Clil(dv.
p lxiii 8,- il) Iii!. Vi Oatta ESPRI'l 1Iiitll il. exlliii! t- e -i ocoiiaii hiii

f A' A xAl IFIIlf If (2) ztLoiritn fito irenaiil !!w and iice le ifiii
ing fihe lioise " I; t;l ain tithle.

\f 1 1)~ A (l- x Al -(12) V. CONCLUASIONS

t Oeii w.hen thle additive noise sources are Gaussian and Thie piirpos- of tis paper %ois to ilt roduce a1 reforneliaiil
spatially correlaite d withl unkoo-n correlation funHCtioi .if I hie oriital I .S)1 It 1111 atiri It u it t h_ i-t'- irider st ;t isl i-

. .:I i I d f~,,L i k ti- o - t-, !- f a. flil siiecjficill s1,v.Iit Filirth orIfor o :, ; i . Ihle shi'ollili v.a
iS Il p -- .- and Ill.%o x It oit 4 t I f, fv I 'L - ii L - III i i it lofjit ioll

its kkvax te SlIp 0 -S additive (ii p-i-.)i I lv N hi il ioj

>oil:(-(, wi..Ki knI, tli ol.IIi l iii) - -x

3) x' li ii 1i iiii 12 1 t~ lit I lIit,, I tcix iii r i (' , Il i
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PI-FORMANCE OF BISPECTRAL ANGLE ESTIHATION IN THE PRESENCE OF NON-GAUSSIAN NOISE

Tharles L. Weigel

Honeywell Inc. Underseas Systems Division

Hopkins, Minnesota

Bispeetral angle estimation techniques are receiving some attention because they would ignore any
Gaussian noise. If the noise on the phase beams is indeed Gaussian and the information part of the phase
beam is sufficiently non-Gaussian, then bispectral techniques should be very effective. Some research has
been dow'e which indicates that noise in many systems Is close to Gaussian and information is non-G-ussian
[1M, but under what conditions are bispectral angle estimation techniques effective? The purpose of this
work is to analyze the performance of bispectral target angle estimators and compare that performance with
power spe, !ral techniques.

This analysis compares the probability distributions of the angle estimates from the different
technilues. Since a closed form error analysis has not been worked out for the phase of a bispectral
estimate, this analysis determines the performance of the angle estimators by computing a large number of
estimates arl then calculating their first two moments. Essentially, this work is an empirical error
analysis of bhspectral and power spectral angle estimation techniques. The analysis controls the different
noise levels and the spatial correlation of the noise on the phase beams and calculates the mean and the
varian-e of the angle estimates.

Complex Properties

All of this analysis has been performed with complex baseband representations of signals so that it has
been receosary to defino a complex bispectrum. The properties of the complex biospctrm have been stated
here to make them clear. Refer to [21 for a development of the real case. The definition of the
hlspectrim of a complex signal Is similar to that of a real signal as follows:

E(a ) =  dX(w )dX(w )dX(-w W '2 where C =t) O +JatXM

fI: desi -e, , ttistical expectaiion. ) Similarly the definition .,I thie xyx cros-bispectrum of complex
ig ,L n Y: , . t is as follows:

k . = : dX(a )dY ' -a - ol) whe' . ' { eT y dY ()
m''' 1 1

7!" , ;I,,,,i_[~ i. : smpl'tely de-e ri I.  e;;: .li syrm'n tr, .' lh; ut( -to , -,:t u [ ]

Wfa +t IT j'+ 'si)' '

!"~~ m: m : i .: ,o ] : }, iu -J : : [ , - - u - u , : !; { , , -



In adIitlon the cross-bispec:trum has the same two-dimensiona ;,l :.: :., i odicity as the auto-bispectrum.

Bispectral Angie Estimation Techniques

-or the purpos-s of time delay estimation the foilowing jorm : s w~a;ai sill be considered:

''t]-s(t) + n (t) y( t t
x y

The signals x(tl and y(t) are real valued, bandlimited and theretor e can be represented in complex
baseband form. The basebanA representations or the signals w; "' iru as follows:

x.t) = R(Xc(t)-eJot} t Jot

In this representation u is the center Frequency of the band. aca,-lating the auto-bispectrum and the

cross bispectrum of the signals, the time delay can be estimate i. e )olcwing shows the development of
th2 Iomat Dior tu hnique:

y t =q _T .- jW T + t)
(t) s (t) + n (t) y (t) s t-.e (t

where s tI is the complex baseband representation of s(t) an : t a:1 d r, (t) are complex random noise

processes. Calculating tno bispectra, and camparing the phas< .. thu ui'o-bispectru to that of xhe the
cross-bispec t rum:

B (W I W F{ L (t+ I)s (t+ 2)s It) + [ t+'T Fr (t-T )n (t
xxx 2 C 1 C 2 C ,: 1 :<c 2 X,

B ( ,o) B (w (W I + N (W
XXX 1 52 1-

B (t .2 = F! e-joT% S (t+T )S ((t-M)+) ,x I +T)r +n (t+mTn It)

S 2 c 2 , . xc 2 xc

Cl' 2 = B 2 ,o )J(0 m.

no X 1 2 .'<

B (W zl B (w ,o L))cyx C 2 xxx 1 0 ' 02 - . . 7

If the norse is Gaussian, then the approximation of the phase' ,i t :, -nlp between the bispectra of the
two phase beams is a true eclallty. Estimating the time d-lav ,i. , ,.nts simply becomes meastring the
pnase ditference between tne two spectra and averaging over- the:::,-' cr 1requencies.

P .'- ,{, .
xx" 1 2
-- o__ _ -

xyx 1 2

ualvin t or r .1 c'','r : , ',~ r f -I r n--,' of frequercies:

BLt (W 1 IT) -n

!he ned .a aversee ye Ii; frequencies. With the symmetry ...pr tie,; the t-Tt] square has redundant
inf )m ati,,n, h it aver av me ,,ver this rego; i,; very simple lb -- , dielay estimate T and the geometry of
the p as,,' , ; are ;-,4 f, :1> ' i'' , the bearing angle:

wh, I- a-' st~r'-"d r ,i" rienai and r is the distance hetwefer, t'' phase centers. Reier to bispectral

* i .,. r it,/ , a re t,'j I '"',-ipsm nt with reai signals [2).

1i; "-,. a '- t f.' itoly t- ,aut t a ] late th'' pbe r . ' r, ' ' en tVc- t!; hi;gnan's 1uvIit.
.-~r '] ; .>s-b -a'' t. ri iJ uto-a;sp< ra ,an be ' -. -I t ">a''a4 ; the phas¢, anle between*i t'[he tWu



Signal Models.

'-application lmt. :eal srothe noises on the phase beams will be neither perfectly Gaussian
I:tV n11M o. nor' odeemn the effectiveness of bispectral t~chniques, one must

zhe pefr:- ihdfeetlevels of power, skewness, and correlation. The complex baseband

at ~ ~ , rocK:zeaA0' ~msE niv- t he fol Ilowing form:

- i (U tl) s(t--r),eJo n nt

lot 1 oroi~r b-. h ~ ~ hams is an independent identically dist: ibdited, i. t.d. ,complex
neotiel teres e delay is less than the sampling period of the baseband timo

". The delay ta rode - ler 1 generat ing one phase signal1, givIng i t the ar,roprlate phase shift
I'llcn~ 0. ri mring the new phate signal back into the time doma.i. The additive

-1'Se for e--h 3,' 1 e b'.'v= ho a both an i. id. Gaussian component and an i.lid. expon~ential

t e (Ut n (U g (t) + e (t)

are '1" comrn ro. -epe~sentat ions of the noise. 2oth the real and imaginary parts are
an! -'tr havo the same distribution. -,oussian and exponential signals are

-~ '~ ""a Un*i"M random number generator 4A

n,;so_ hi ;,is-sia -ompornent, then bispectral target anple estimation techniques would
00 io"a oc~iPe must contend with the GaAssian component of the noiLze, and

0 ' "'orlevel of the noise. If the noise has a non-Gaussian component,
r, 1 1 '-" -niquos suffer simi lar deg;.radation and lose their advan- ages at a

Is 1 i ios bec-ome! important. when using bispi ctral estimation techniques:
t ) -T-in the signal to the power in the noise; (2) Skewness Ratio, the

h: skwes ofth 005. These noise ratios have been defined as

ri- n] I - n 3

F lo o oth phase beams have the same signal _e noise ratio.

c-): nt Ial I', ly ioltt t hour rho pc':roroi m a the c-.t imart ion
w; 11 W') r f, tast the effect of spatial correlation, toe noise on each of the

* IWiih the, i31ouit .arla'ii a o w'

n R. ri - a A-

71 Ph 'K ;.I A w wi tO h t'' des;iried cotr relat ion be twoen t he !wo beams_-, huqt
0% ~ ~ ~ ~ w K'I otrr'l'dwth the infor-mation nr o f the rhinse beams,

Sh ort th- hi ' bams are , oi relate'd This -rea <':das

N~im~r i -1 A I ycrri thin;

r ' J 0 ho i j gil' I M 1! -1

I"~~i -j I -:, Ci '1 ;ASr'- -f ,,mat. -- OTo ,heSt/ipr i
* . 0~I t~' A' avArag,-o rie' 3 rUJ ppr r'o f -i Wl ti-

T, mI)-' vor'oA' of "')f'' K T m'r" i-i



The bispectral angle estimates are calculated using the technique described earlier in this paper. The
power spectral angle estimates are calculated using an analogous technique. Refer to [7] for a
development of the power spectral technique. With the estimates from these terhniq,,-- the first four
moments are approximated and used f- --alvze the performance of the estimation techniques.

Simulation Results

Signals were generated according to the models provided and the angle estimates were calculated using
the numerical algorithms described In the previous section. The results of the simulation are the
estimates of the first two moments of the angle estimates. The analysis included these moments from
several combinations of power ratios, skewness ratios, and spatial correlations.

Without any spatial correlation of the noise the power spectral technique performs better than the
bispectral estimator. The mean of the angle estimates are closer to the true angle and the variances are
smaller. Figure I shows the standard deviations of the estimates as a function of power ratio. The
standard deviations of the power spectral estimates are better than that of bispectral estimates for all
cases of power ratios and skewness ratios. This figure also shows that the skewness ratio does not have a
great effect on the performance of the techniques. The bispectral technique is very dependent on the
power ratio and independent of the skewness ratio. Even with a skewness ratio as high as 100. The mean
of the estimates are always within one standard deviation of the actual angle.

When considering spatially correlated noise the bispectral angle technique performs better than the
power spectral technique. The variances for each case changes very little with correlated noise, but the
mean of the power bpectral estimates move toward zero with increasing correlation Fa!ter than the
bispectral estimates. Figures 2 and 3 show the mean of the estimates as a function of the correlation
coefficient. The actual angle is 30 degrees. The graphs show several curves for three power ratios, and
each figure Is a fixed skewness ratio. As without spatial correlation, the skewness ratio has little
effect on performance.
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SEPARATION Of STOCHASTIC PROCESSES
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ABSTRACT Several other ways exist that cope with the problem we

are going to study, and one philosophy is to exhibit a subset of

Assume we observe an unknown linear combination ofp relaions that the unknowns must satisfy 131 151. Another

stochastic processes. The problem we are addressing here is to approach could be designed via Volterra filtc,s which utilize not

recover original source processes by applying an inverse only ihe data samples, but also some of their powers 161. This

tr:isform, F, based solely upon their statistical independence, kind of technique is definitely suboptimal, and we rarely know

The conditions under which this problem is solvable are first how far from optimal it is. Another example of this class of

pointed out. Then, by imposing the cancellation of output cross- approaches is the minimization of a nonlinear functior, which

cumulants, we obtain a polynomial system of equations that the actually includes in its expansion an infinite linear combination

entrie- of the linear transform F must cancel. In the ring of of higher order cumulants (see I I for instance, and references

polynomials with real or complex coefficients, obtaining a cited therein). This can be implemented rather easily with neural

greatest common divisor is not easy; for instance Euclid's networks. Unfortunately, a more detailed analysis of the

algorithm is unstable. Our approach is rather based on a detailed adaptation rule often reveals that the convergence is very subject

analysis of properties of input cumulants, and provides when to initial conditions, as with any stochastic iterative algorithm

p=2 a direct solation, which can be also implemented in an aiming at minimizing a nonlinear function.

adaptive fashion. The extei-sion to p>2 sources raises several In our approach, since the nonlinearity is polynomial, the

specific problems: the solution we propose in this more general problem is rather stated as a direct solving of the nonlinear

case becomes iterative. system. We point out that the main obstacles are due to the

presence of polynomials of several variables, when miore than

two sources are to ho -ecovered Some particular results give

1. INTRODUCTION more insights to the intrinsxc properties of the polynomial

system, and justify the derivation of a simple solution.

This work was motivated by a solution proposed by There are currently many applications to signal separation,

Jutten and Iterault I I using a single-layer of linear neurons, which have been identified by Ilerault and Jutten for a few

whose adaptation rule for the connection weights was years. Let us mention, among others, the application to noise

heuristically determined. This was tiie first algorithm able to reduction with unknown signal and noise statistics, to direction

recover stochastic processes from a linear mixture. Since no finding when the propagatior medium features are uncertain,

reliable theoretical justification had been gi,en up to now, our and to image enhancement as a preprocessing instead of the

first goal was to explain the behavior of their algorithm: and principal component analysis.

determine the conditions under which it would converge in an

acceptable time 121. In fact, it has been preyed that the former

network could slowly diverge, or might be extremely slow to

converge in various standard situations !21. even when p=2.

O)ur second goal is now to design a new algorithm avoiding

these drawbacks.

"7,

III



'. B~ASIC 1/) RELATIONS IFFIWI:N (?LAIVANTS 2.;. Standard methods for solving pkolynornial systemns

21. Nuotations arid Iproblem statemrent Solving a polynomial system of equations is ohs iously
equivaicnt to finding the greatest common divisor (CL) to all

The observation cit) i!; a detenininistic: linear transform of a p- poly,,omnials. U nfortunately,. due to measurement anid coding

VaIlued stochastic process, xi u. This unktro~n linear transform errors, the CL of two polynomnials with real (or complex)

is assumed constant for thle sake of' simplicity though the coefficients tuns out to he alwsays one in practice, if computed

principle mia, h: extended to a eon vo!Ltl ut ran sform. So de note in a standard way. Thfis, it is n eess ary to flook for an

A the constant squal~re matrix characterizine" comlpletely thle approximate CL.

transformi [his, mlay, !e written in a coiopact formi as: It is possible to dlefine a quasi -GCD 1).UtX I of two polynomials

cmt A itu: of- a single variable, A\(X) andI flX), hy minimizing a norm
\it) l x I .5 IIL (I flt\(X)+V(X )I3( X)-D(X jil instead of defining an exact CI

ci le. e (. I CA) as satisfying C(Xt=litX)A(X)+V(XB(X) 171. So, the
backbone of the CL computation is still the Bezout identit', Of

[he robem onsstsof ind ir aninvrsetrasfom. K wich course, this principle can be extended to any finite number of
is ncessril a cus~rt rculr marix.suc tha th oututspolyiiiomials. Unfor-tunately, neither the 13eZOUt identity nor the

s(t I Cit Jstan1dard Euclidean division are valid anymore in K/X.Y/, even

aresra i s i :r l i ul pn dnt 1 e in ii is u w ae sar hig re if tile CCL can still be dlefined as iii any factorial ring, 141
thenr thle enitries of the pxp miatrix. F. Consequently, the computation Of a qUasi-GCD raises serious

prublems for polynomnials of several variables, and to our
2.2.I nxrtoutut claiors hro ciicuriulntsknowAledge there exist no n umerically stable algorithml L,.! -ving

out this task.
The output euTnItiarris of order it. denotedi ab~jactlx' cum1lW(s),

are lineair functions of input cuinrulants CU111(n'(e). ansI

homo11-CeIOLNes polvunoriials Of degree n in the unknow i's (the
-ITMATIN f I HE INVERSE TRANSFORM

entries of' J r In order finthC ,ULiI)rU[, s, ;m to he independent. it
is necessary and suLfficienlt that tire jouint characteristic fuinctisuio . w-tpswcsm

oi si separate into thle protfuct of marginal characteristic

functiMiri. O1SIt. In other Aorsis, all thre cross etimulants of any In the light of the considerations enumerated in the previous

(,rd : /er~vsections, the inain difficulty to overcome is to get rid of

* i0. polynomials of several variables. that appear as soon as p>2.
i-ni *.~, . (2) This difficulty does not apptar in the flmo-sources case. This is

done (i) by splitting thle transform F" into a triangular matrix 1 t

If -,, restrict our attentionr to a finite oider i-. then the systemo
obtanedi2~ s frmeduifNi ~* -and a rotation Q' on one hand, anid (ii) by expres sing QT as a

*~ plvtrmial product of Civens rotation's on, the other hand. .So the set of
CII iatuiri5 (f dereeii.unknowns (the entries of ~- into the subset of plp+ 1)/2

So for fixd ii ald as p) increases,, the number 0if unkinowns entries of L, and the subset cs 1/2 free parameters in Q. The
grotA , ias 11 ss herceas the nuiriber of eq Liati ms, of degree n groiws juLstification Of' our final Procedure (9) is based on the
as pf',tli(e svstir (2) alione is, isersleterinined for n>2 itnd 'rn>2

___ prclitunitrary re-sults belsow.
"Ilie concluisin sse arn derive fro--~ this is that it is not realistic to

wisesuc a systiin for large valires of P), C\ en for tmonderate ii. IAom(i

If i--I for esiiphe. ,ke fi;ive N - I puii.nuiitials of' one variable Let Q be a rotaition miatrix atnd A\ a sliagori-i signs mnatrix (ie.,
foir OU,2 i . - "' -"; pol% rioniits each of 110 variables for fuirmied orf + Isi. Tei there exist a ritation matrix Q suich

p-S In practice, we are forced to uitilize a iii,: o ~ hr(f A Q = IA. 0

erlialimns of br. order. itnd this As ill be sufficient proividled they _=\Q iarotonar,.ils

arc ssell codririrnef is Q). namtielIy its s peeil uIi is ft rinted of ounes, and of' comiplex



conjugated pairs {e-. 10), this is obvious. 0 Weaker indepenlence criterion

In the following, instead of imposing the mutual independence

Lemma (4) of the otwputs, we shall try to impose ony pairwise

Any matrix G may be factorized n the following form independence. Pairwise independence is known to be a weaker

G= L QA (3) condition, though both aic. equivalent in the ca.;e of p=2 sources,

here t. is lower triangular with positive or zero diagonal entries or in the case of rotational invariant probability densities. We

Q is a product of Givens rotations asist that pairwise processing be a limitation only for more than

A is a diag . ;.. s Matrix. 0 two sources. Both notions might be equivalent in our problem,

iP. '[his factorization is a direct consequence of the QR but we have been unable to prove it. This limitation lead us to

factorization and of lemma 3. 0 cope successively with polynomial systems oJ'a single variable

provided the inputs have been whitened by the transforia L , as

Corollarv (5) shows the procedure below. Proceeding pairwise may be

Let WI. a given sequence of strictly positive real numbers. Then viewed as a relaxation scheme upon the p(p-i )/2 o--tho..a

any regulr :natnx A admits a unique factorization of the form planes. For p>2. the procedure is in principle iterative and

A = L Q A. A = diag{± IX,!). 0 (5) nothing is opposed to run several sweeps. However. no

convergence proof has been yet derived in this case. and one

Dheoret (0) sweep has always been sufficient in our simulations.

Let the unknowxn transform A be factorized as in (5), with 1.il =

1/std(x,), the inverses of the standard deviations of the sources. Procedure (9)

It is possible to recover matrix L with the help of the second step 1: Transformation to uncorrelated outputs.

order moments of e, and matrix Q up to a permutation matrix P - Compute the Cholesky factor, L, of the covariance matrix of

by resorting to higher order cumulants. 0 the input, EfecT}. One may prefer to compute the LQA

This allows us to search the matri, F und, the form F=QTL- . factorization of e, which is better regarding rounding errors.

Note that in the LQA factorization of A, the sign matrix A is - Preprocess the input e into a random variable e = Lie. As a

mrrged into A ard is therefore inored. result, the components of e are uncotrelated. 0
Preprocessing of e and computing L may be carried out in a

Corollary (7) singe step as shown in section 3.3.

Let a random variable s be defined as s = Mx. If the components step 2: Estimation of Q: description of one sweep.

of both x and s are mnutu:.lly independent, then, matrix M is 0enote (O)=e, s=.(J) and .j) = Q(j)(j-1). For G}<j<J "

necessarily of the form M=PA. where A is diagonal and P is a p(p 1)/2, determine the plane rotation Qj) to apply to (j-1) in

permutation. 0 order to cancel the cross-cumulants between the kj) thl and
pj)th components of slj). 0

The above theorems show that one cannot expect better than

estimating the inv.:rse transform, F, tip to the undetermination: In a sweep. the rotations Q(j) are defined in a plane containing

the k(j)mh and p(j)1h coordinates, where 1 k<p and k<i<p

F A = PA. (8) describe the J possible couples. For the sake of precision, let us

insist that

The presence of the matrix P meins that it is not possible to j = (k - I )(p - k/2) + , and I < I _ p - k.

recover the original ordering of the components of x, and that This corresponds to a cyclic by column ordering of indices. For

,ourccs may have been flipped; )m the other hand the presence convergence issues, ordering has likely the same importance as

(f a diagonal matrix, A, involves that the outputs may have in parallel algorithms for eigenvalues and eigenvectors

different amplitudes and signs from the original sources. These comgutatic: Ne, Q(;. is desined in such a way to cancel the

undeterminations are inherent in the problem, and do not affect pairwise cumulants of component k and component of Sj),

mutual independence of the outputs. the other components being utichatnged. For each j. this could be

done by cotimputing the quasi-GCD of the three cross-cumulants

of order four for instance (or of higher order if they are not well



conditioned). T his is possible since they are polynomials of a wh'Iich has p2 dlegrcce of freedom. Output cumiulants cun'")(e)

single ariable (he tangent of the angle). lHowever, a direct define a point in a space of- dimension C " .1 We ecie
fl) WhnAdVcie

computation may be derived as pointed (lit in the next section. all the possible transforms, this point mov, o.. a manifold of
The overall miatri x Q rciUlt'ing of the product of the J plane dimension p2 (II ) follows fromt the fact that CP,1I >

rotations, is expected to approxinmate the transposed rotation

factor in the I.QA factorization of A, up to a permuntation-and- If p=2 and n=4, theorem (I]I) predicts that there exist one
sinmatrix. If we denote LFl1QhJA 1;, then it may be checked relation. Relation (10) is very satisfactory since only cross-

that ihe product 1:-, is effectivecly of the formi PA. cumrulanits are involved. Thic: is niot true in general from theorem

bI ). Now, a Givens rotation in the plane l,,) is LU.mpletely

; ".Basc reitin bewee inpt :mulaitsdefined by an angle, (x, or similarly by its tangent, 0, up to an

angle undetermrination of 7t. Since adding 7t: to the angle only

Thr 'a bettcr way to proceed than computing the qUaSi-GCD changes the sign of the rotation miatrix, Q, it may be

of the thre ross-c:11uZmulns of order four at each stage j, I incorporated in the undetermina,.ion pointed out in section 3. 1.

A-ssumec we want to detennine the planec rotation Q(j) to apply to Moreover, changing 6 into -1/0 transforms Q into APQ, \Xhere

a pair at stage j, and drop index j for convenietce. So we can -10 1)0'(1 ,
a1sUmeL in this section that we have p1=? inpnwc :nd outputs A= 0 1 ,etP~I)I

ithOUt loss of generality since Q(j) is entirely defined by two
input-, jele,).Ih us. since the solutions Q, -Q, APQ and -APQ are all described

by the single solution, Q, tip to the iindeterminatiori desenibed tn

Thc, rem (10) section 3.1. we impose the angle to lie within the interval

l~cnoe , th cuu ats cm 1' 11t ',e~ o th twovarate -iT14,7[141 without loss of' generality. i.e. its tangent must lie itt

random vaz riable e=.Ax, where A is a plane rotation. Then one
Denote c the cosine of angle (f.. Then Q may be written as

Can exhibit the relation:

er i+ 2 - 0 Q(O) = c( )I

(T( Y10),/722 and p = 01 y /~ Let s = Qe, Fk, =Cuini )(s ,s,J) and yki = curnk*,Ie C,)) With

these notatiotns, relation (2) is at order n=4 and for p=2:
'.Bwicd oin the tact that thre compotnents xi are mutually

mdc-pcidcnit, relation ( 10) can be proved by sitmply replacing the -y3W + {y-
3
yr,)

81 + )yii 'l)0 2 - (y .O 3,L,:8 + 7,1, (
2-1)

I nmts y1 hb their expressions in function Of Source 'I-w I *I 6 Y 3722)0" -I (',q ± Ya3y 2 8 Yu 2-21)

C u l Ia Kii 1. F /Ct  (141l + 2y7ii - 713)01 + 4 Y22 + ;Ou(82 + 2(l -~ 718E +

C ,~ + K:,

V/ IK + K 02. First, it miay be chlecked that the caitcellatioii of( 12-1) and (i 2-

K: 1 2) provides f'qlivallt itations sinee dO I 0 )11/

Scond. ihcelrcili f 1(0 jm)% C thal11 he !ccelaion oh 73 leads

-. I 1 . .: te~e. 1CC d . >~* I, :()I\ c a poll\ 1lloiI;,II of deureec If dit 1 tangeeit to 01, 0I tm', In

,;,t~.n.l. I r/v l l )1 -

oj)



P. Te plynmia I,~(O saisfis V(6 V ~-l 6. hus sources, and track them inl a slightly nonstationary environnment.
With this purpose, the moments of a random variable, e(t), are

it is necessarily of tile form
estimated bv an avera-intg of the formn

P('= 0 ak) + bo + a0+ 1.

u~p to the mul ipl i ,ative faictor I /y2- Let X 0 -1/i. Then11:t)=0WCMo) ,+fi)21,0-1(5
PO/H,' is a polonI alI in N ordegrec twko: .t u2 et ()1+3t)m(tI) 1)

R(X) 1 X2 a X +- b + 2.
wvhere WO~t and 3(t) are real anid of modulus smaller than one

So its roots are X a,/2 C ./4 -'b-)satisfying W0)2 + 13it 2 = 1. The choice of thle shape of a(t) is

.NowA the Utse ot theorern 1i t proves that this roo-t is, double, and argued in section 4.

that thle sintgle root is. X p 1. Result 13) follows by solv ing For each time step t, the adaptive implementation of our two-

0'2 X0i I steps algorithm runs a single sweep of procedure (9). It may be

summarized as followAs.
Lemtma f 1 4

I- an 1 V0 31f1, ( have o tiliv tlte root ( 13) in comtnon wAith stp I.- LOem~' t"

(14) 1) Form the p+ I by p+-I matrix

11. Construc tile polynotmial F(O) = 1- lie1/) - 1_3(10). A 0i) ( 1/0t(t) J
itectssar,, condition for 1-1 (0) and 1V, 106 to have two common 2 )Find the sequence of 1) Givens rotations that cancel out tile p

roots at 6 and - 1 /0 is that 1 60) va.n; shes ait 6 anid - 1 /0. As for first etiries in the last column of Nfit) by post- mulItipl ication,

V_ )9. F(O6i satisfies Ie) = 4 i /~ Thus it can be shown such that the matrix obtained can be written as

in a similar manner that it has two c roots X=p and X=--4/p. Tbe (t) 0)

first root N=p provides thle tWO Solutions 06, and --1/0,): the NIt1= n)

spurtou01.s root X 4/p is not cotmpLutible Awith ( 2- 3). 0 It tmay be checked that the row vector J obtained satisfies

Sell' iti to i.e., the components of e(t) are LtncorrelatLd, as expected.

Results 13II and (14) are trte in the noi.;cless case. Indeed, for Step 2: Adaptive rotaitioni: 'AROI' (17)

oh',crsationls of limited duration, deviations of the estimated Iniizs=.

CUMULants -,/, from their trute valut's involve discrepancies in For I k<p and k< p:
0). OneC conlcn'j:vT" ; that Vi,,(J may have no real roots, or

1) Isolate the pair sik), 5(
conv ersely four real roots, whereas only two (equivalent) 2 Cmuetetrescn re oet n,,nlI n
solutions, exist theoretically. Fquation ( 13) gives in this case aacodnt:

"ollttion closer to thle minlinim o)f, '2(0)1//,-' itt -L rather 24 t -3t2m 0 t +r )qS~~S~ jq rlc- O,1, 21. q+ r -2.

than to its roots. Our point is that ( 13) is almost as g>od as 3 Compute thle three cross-moments of order four. mI rt ,

tioving the sy tcne 12) (in an ap proximt:- te man ner. anid 113

mr,,(t) = 13(t)2 rtx,lr(t) + uWt)2 Sik )" S( ,i)T

M t)(ts L ( stM 4 1Dedutce the three input cross- cumu lants, of order four as:

QmYin = 13 3m1 1 n

722 = '1122 Il,( Ill()'t - 2 i1 1

5 1Compute p (y, /2,. antd 0,, in accordance with (13).

6 )App)ly thle rotation Q(O 9) to all componen(ts of s.

3, \ valc_ rnhml

4. SIMUIL.ATION RFSUI:FS
I"Mon procohire (() and reutI13), we are in a position to

;Inin adaptive alporithm able to e'!immie the origtinalt~e-i -Simulation result,, airc presented with p=3 soutrces. The dlirect



a) -orithin (9-), A~ hich ;: a dircc, '\ ersion ot' (17j h as been utilIized

\x 111 a sunt le s" epl) - Est imaiites ot' nom ents and eunmu Ia ts h ave

b eri performed \. iuh a quare \A indow, of* length N samples. V/~~
In our ex ample. thie sources x~xt,~)are respectively a f

-2 ------ _____ -- _

uniform .% hi~c noise, a ramp, and a1 pure sine Of' Course, no a ' A --0----.

priori inf'ormiation upon soLrce Shapes or spectra is used, since

they are assumied -'tallV unknown. These simple signals have () j V/V 5 AP ,

been chosen in order to be more "visual"'. Moreover, their A
historanis c vr), far from Gaussiati, which allows an easv - 1( o -- --

sep ration. The tranrtonn -\ sas in tnis example-- --

(02 P6-A~vV'AA A

and trawtisrtt F obtained "~ith tlte help of- N=500) samples s--- ------- ----- - ---

approxrclcs (S) vk ith A-l sinmce ,ource va -ances were all eqlual to 2( 40) 60 Wi I M~

one. and %kith

(I I (IOutputs after I sweep

IV) ra Ntaller ato f :2() saniples. we have a larfger ~ .:; A ~ i 7 /

-0- - 1l -0.07 1.00A A~

ITle distortion ki-, s~he ot' the lastl graphs. 1  A ./

~2-
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('17\IULANT BASED) PA11ANIETLIH ESTINMATION OF
LINEARf SYSTEMS OF' NONNIINIMUIi PHIASE

Y. Inouye and T. Matsui
flept. of Coutrol Engineering, Faculty of Engineering Science

0.:ka University, Toyonaka. Osaka 560, Japan

ABS TRA CT
One, of t he basic problems in multivariate timie series niodtil fitting, is that 4f et imat inig AWN A iii 'I '-l

fr ,ii thle outputs using their statistics. Noninininium phase AR PMA in,)dels are- n-,t iI''ntifiabb'- by using
mu tlt ichannel parameter est imat ion approaches based ,n second-irder -statist ics. b catixe these are- lirnil 1,,'
Gatissiain processes. It Is widely known that, if time series are in-G aus'ian. thc in ionita~rnui i phase-
paramet-iric models are ideintifiable from the timie series uising t heir higher-ord er c uiu lants.

T his paper prop~ose a procediure for estimating the coeffic i-nt mat rices' f uiit ichaii iel rit.i~ inin p Itaxe
A NI A in )dels, and give a reen rsive algorithm for calculatiitg 0wb At( c eliciezit iiiat rices' A simuiilat 'i

-xanite is given to ill ustrate the results of the pri posed 1 )rocedurtt

1. INTRODUCTION
It, rl,-r to extract imlpo~rtant statistical characteris;tics of ait 'ibseiseil (ulnivariate ;r nIuultitarilt-) 1111)
xrtsit tsci l,,iin practice to assume that the time series is t he output of a linoar t iilie-iilvariali vt lt

driven by an inle-pendent and identically distributed (i.i.d,) input sequence. antd t liii to fit-iii. it,-
aninw n c' efficient s of the linear system. This is the pro blein of est imat ing a paraimetric A H NIA i-'' 1-\

us;inlg the notisy or-servat ions, which is important in applications, sticlh as linear preicrt i n siteci nl "xiiii
nitiltixarial))le ci ml ri] coonetrics. and geophysical data processing.

A Vast Majority of existing met hods of syst em paraimeter identification utilize in ly the, sxciii -r-ir
statistics 4 ' 'Serxatmo-n prcse under the assumption that thme observatio)n processes arv Gauissin. - 11ore fr
tii' lest that one- can do in this case is to ideintify spectrally eq uivalemnt miiiiintin p~a~e vxti'1ms. lit

tht'-r xv Iris, a linear sy stem is not identifiable from the noisy out put using its secoil- rder sastsif t'-

sxst~n Cis 15flillintinitit phase. It is, hiowever, widely known tha a nn niii phs ytilI lt t~l
fr' ni the nois'y output uisiitg its higher-order statistics called cumuluits if the input priocess ix s nGiiii

5. In the unitiariat' case. ciimulants have received a revived intere-st for A lDNlA paraiii '-r -111t ittt''It
anid oilier sigiial proc 'ssing tasks '4'- 7. In th utvrabecs. rd-ord-r cutiutlatits are eii veil f'r
st imlat ing itiult ivhane AR IX mo-dels of knowni orders by Ragh ti veer 8 and for e-stimatitig ii il jltann itI NI A
mt,,il iv In':'tiive 0L ',l0

III this paper. using i b,- previ'-'ts results in 9j.'10 we urps a rcdre for extlitiatitlg tli, c-tt;ii''t

Ilat ri-s oif mnult ich aii ne uirnmu i in phase ARM A models, and give a recursive algorit htn f-r '-ilai ityg th-

AlB c'etficient mnat rice-s. A sirriulati' 'i exatiple is given to illustrate lie resuti ts of the pr-q-.-d proc-iv It

I1. PARAMETEIR ESTIMATION OF LINEAR MODELS
.I y(i u Ie a stati tiary r- variate, nn- Gatissian. atitoregress ive rio ,viuig- average A H MA j. -)v't. r r' -

withI a ii' ix vec I or pr s whioh is descril bed by

xxhI'- r.- ltt 1' ;t t-r'-ti'-at. oa~tlimarY, A-armatv, andu'1 
t.ii vti'l votir ir-*' '. wxitlu1 ''-litp I. it I- 1 1 71

,'t 1 fNii. tl- I, 'I dr Ir t'ii'rl ati spa tiAl1 1 1 i1dh'l e t- I t iI tI I 'Ieftil n by )

j'~t it t I . i k i

A Ii



A. i-st iratprt 4 MA i-dj

'.,ttiig p (1 in (I[ we-itawn an NIA~p) pirsn" y(n) as filows:

yin) H MW H it 1) v(YO. 4

Su-btiK1)int (3 ) and ursinig if assuruptits stat~d I-lw (1), we~ -itan

hr'. it (k) I, t I, (tij) elemnt of muatrix 11 (k). apil ding (I -- ml stand,, f,,r a .4 - diagrial matrix

I- 'abliriri (5) wsit h in -k, in - q.p n m, q.in- atnd in - q, in 0- w. Wriain

HM() and HIij are 4 f1t1i ciriitt rank s. 0 K 17)

lu-r u- l--- ssirtptii.matrix Ilf ((41(f) has is itivrse. Pren"tiotying Oblw HN)sO 11 n,~lU II
MsIA~ -i1 titwiiin, tii- r-ntint, (6a), we- have

C ~ ~ ~ ~ ii( la ( A I~f & II in 1. . 5

li-th- isv- r r n trc- Luk 1 ) arid L)0, q) as

Li k. j) -C fA.qw. X (K. i L(U. q) - (U. j).- -C (0,Jq. (91

Lt (c i!, q) -. and (n k iIt at!,(0 11 0)

Wi sti-htnt 16h) A,- the s-nil: -4 (9 and rewrite 140, q) as

114',q( - H(C)AI~qWW&Hr1 1 (i)[,l

wh-re .1Ifqi diag 1q) -- bh AqgY .dia,<Ii -irfl h .(q). atnd ifin II / ) is a hick diagnal "s s- matrix

wlthi- samn'- 'liagrial block e.-me-nt,t 11'1(0). It is-asily shnwn frinu the assunptin (7) t hat I1!) I has

full r-w rank ei. This inealis that M ila I )U is of futli rw rank. lbecatuse miar;:1l I(jN) is 4f fmuli

r--w rank. Ihrf..(1i) impiies fr~n thp assturrpti-nr (7) that L(H~q) is of rank R. Thus, [,)IijpL1 
(hg)

i... m'-, ri.uisirteilar ti -as, 4f s r. Ini this case. silving (10) for 11(k), we ibtair,

11 (A") I~~). H()(OqL 0.) 1)). I12)

N -tic- that if ) is nrringiar for somel In -1.2-, r, then (12) holds true- even if LQk. i) an1

C tv/I ar'- rr-piacel kv C (k.(1) and C. (Ijq repectively. In case of s - P, we can adl" (10) fir MOA)
rid 4-tair!. inste-ad '4 (12)

11(k) - L(A~q)L.1 '(fl.) 1,(I. () L )UgI(U). (13)

ri A- d, -- t b,, pf-id, --inv-rs.- ( i-., t It, g.-iiralizo--i inverse dehirod byPenr-,e) ,f tmat rix A1. F(j.1 12 )
13 ) I i, at silmrj .- l-- i f-rn, exr-ssin wichi relat-,s t he- oit t put rumuiants wit h the MA c.-tlicie-rts. T'

-;tItII f121 -r (1I3:). we- should have- t h- first. vain-. /1 (0) of the j iltpptise re-sponse) sequernce j{1 Ilk)

I -,l-t,rmiine- 1I1 0. wi- in'lsiier (1:3 for A- q a, 1  sutbstiturte !I~q) into (6c) ti, h1air,

V--- thlat f iaj i gin.z-ral rut gii-trait.--i i- hay, a s,lntior, when 11. takes, a valu,- iiff-r, tt fr-ri,
1,va n, "i v- n is- tii- right handi side- df ii i. 11livevr (14a) has always a siritir ivim.n-vir H? is

I.-t--riiin (I-v I-I I . Withinl any furthe.r assiirrpti-r f.r 11)1) a untiqupe s"Iimtirl f (l1ii1) is tr 1 ~id
Il 'A-s. v T r t i - ~It-I%% i it 10. t Itat a siArtiK M Sf (I-la ) is iidet -r'Tilli Ih rrii111 reiv rII pV11 ti , rig t rr11 111litiliiCat i i -Iv

p-r itii t mii Itr Ix . f tat is. i ff/1'It anI 1if i ,t It sat isfv ( IIa ) ,b t ihn-Iere exists a perrmittatI-itm at rrx

P1' *n It lia I a l It li ~I) '. Ibis, pr, VilI",s t h -11 Willing n iii.itiiity Tire(r in11 ti.l1



I[h n I : I f {I H A- sat ific, I ITt 41 kl I IHIAr al-' ,atIisfis (T). wi-, P1'

lrniit iti at ,1it at rix. ( ,.it','rsol~y. if 4111 A, k i Id k Ifik) It satif I ) theI n Ili r, ,x IstI a p'- Iilta Ii. II
itrii .~~' . i ch Iht I!a I llAl f(rA l

T'Iii al" ve ,i-n i 1*avesI - t tint Ok r'f''Idnl If lbi'lifi a -'ttii iofi ,f I II. wiiicnit 1, ~ 'f' 11n

1I ' . 14a lit-as a it i n it Ir s. hin uf I [I Ilr I IT assiIn ipt i -1 It t at IT, slt1ut1Ill 1)... I [[I,,- all 11 pi t't I

at t riatigiit ar aa- alt
1  wNrit I la f 'rtiitt wisr' an.k

/' f . 12 0t f it ( h f it)1 I f f (I f ill t f l t 1. 2. .1

wr I% a id" thet, a'isiilil pti,'It ta I t 1 1:1 11 1, 1we traiat dm a: 'tl i II I Ie n -qtialitv ill I .-P

1rtii '2 1~ 1 ili flit- i I (Iti T

li i It.l2 ItI i it r, I It, it If r/ I ,f t t Ifi I I). '- it i fal I f f, Ij l l t: n/

11tj~tl . t 1n- 1111l f I t i~ j-Ill f'lilt- /1 1 call -h e itt 2 i l 15e bn lain (1 ) aid A -v- t t

tsil k Ic It, p iin ii t / rt q 111TT1 f cat Call use1  
AL VI) s d i f w its, Il (ii l I 1 .5 /. and "b. - , I a

:1t 1 hn r't ( Tin'" jtlantitn- inivIv-d in itin' rqualt c.rrrsprndiiig tI Iti I I are airr'adcv availaldl. fr,-it
III. Iuitiin crr-'spnding t I. i.~ J with It i and j 1. 'This. 1110i 1 -in 1)e frit ini I r-'it r, It'vI fr' -i

7Ili Itn I. 'w' triamig t cast,. Ani awtalgil" r--lar- call in' frlfbwel III find a -nqt slt''i'f i 1-
? 11, I as'tiiiipt i''it thIto th s t t hf ) .'i' ti ,it 1 pp- r Triangular Ili I t case, NIt -it 2. I :i i

iIn- i flu j 11 1 i1 1.- 2 2. H ( l) ch it - f it it d c -I )atl rat Ivr siftiplvN as fl .11 Nv . n i t' mt. Tit
If in i V I lt' ii t tic, le its pit

H ~' I .

-tIt i a t It ''' it v Ise a S

rf a ft 7

-' C
I/fl~ ill a ~ 171,1

L I

11 -''I 'i I 'tit-l0 i ml fa' it' ~ I. ilai' I la ha always a... Ilain iwi-iv

It' ' I -at l ", aft 11 t It i t I I v f. 1 fX It I '.c tutu id di fI" lls Ila ta l a af- I I I' I ir

-i, r -t ri , - t ~rm'i i--I'-- i'. tilt' W , ta I a yr.a I t -li Irr-f'r' v% _1- F In 1 1- t alls Itt '

r, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I- -- p,. r ti fIi tm ri l tI i Ii. I%, -taf I w.l d-oI

it. It :t r- ii , I t



Ns p r,- N% -p i- i i i f r I.alI p.h ip,. ! Il. i--i- i '1 1iplt 1 1 ) pt Y it triIif 2 2 1 ii. Pi v.)

ta qt I

I it a, r, 12 .i li t ri fi t vi i ar n f a

2 It I 1

t2)

tlP ' h- 7;1 1i t it ra ppk Of)ttp 2 1)i-H,- A, 1p 4I 1, w. 1 -r. fr-. if NY I;i fill tI a .a
I! 1li a'.t 2. h, it t Ip-- N, iw. pifif Nit aHIt. I a , ct~ 'i-IpIlIat'II I N, " I IIL l -I- I.-;ii ti I aj p r '-1Iitl 1,

r ~ ii . 2

ip ii, pp At i~ . ap I inap I- .-I-t'p I I% tpipti 2 2)1.
Pi 11 pp 1, i-pM rpappk /tp 2w -''dj i -' triittapt f iIf, mat rix c~l) -nIp f tp- (j..i ti p r.-

A', pp -ip I-- -III- I I.I

If' k (--)- . p P27)

-II aap A-it I'- i.. a l d - ra-- -quiat i-It ifi Ii- I rd-,rp r Ii I np Cast' f 0, " S I Val - .l AIi-
.1 1 i -'' -a- -11 -pp " r t Ip . t ,rii iaiu -f t ht. o ipit rix c, ili), - I f It.-, firs t t a Np- ia,

r,-V... f 1)1pt p % iat I A J p1 arli .-qiiat' it t I, z--r- W.-t w' btairi

Np--- It I -- t 11

o k

f-r t .N I II I- thfat kA 0t fr T '1 0) bv trn p -a IIf th1w fi rst o~f (21).
I iiliirii it L4 t Ip'' al--v- p)r,'~i. %e fi rst caljciffat e 'a fr, I t if first 2' 21). arid th.Itit k .1 v-e 127) 1 FrI

PP. ,-.r f 2:) f r A - 0 . NY, i't, sIfvev )2-) h, bt aii cI a tlld It, allt( fiit a) h, use 122) t, Ibtait c anid .

J. I'.tia t'r I I I AR NIA fiullI-s

P'.trIl 1t 1 p)I'viip 11v11i sf'. id - (I) II V y~ In i)y nT - i) arid taking expectatiins. it is 'easv tI, seea thfat

)y )y y y I itI

f . r-~ i -q

al-i'- f'-r t If last .-'liaillv NWi have usIi. t i.,- fa't- t hat y (it i)P 7i1- i) det)I'riiis at itt- st Iln U) 11
il rp, pp. ai Ihat vI ( n sa t I fi.-s 21). Pit tt ' (' V' 0t) att1d c.tipa efat. fig tile aLi-. 'qratitt i

-/ I q '2 - - q p. W '.. Ital I

-C

I A(I Af2 A(p) C



F.( 1 1,~ k it, %w ii as t he, higher- ordei Yulie- W~alker equation. The AR coeffiients, At Jr)'s are deterriined
1v.g31). eais tile Coethierit miatrix .1;l becomes at block-Toeplitz matrix, a fatst algorithmu for

1,vr~ ( 3 1 s, "It snot (te Tis is shown inl su bsection I). Ili order to get the MIA coetticients, 11 ( J)'s, we
alopt the, *--a1l, 1-41it11,1 tun'Ic i procedure ini which the output y(ui) is applied to the p-th ,rder F IR
flt'-r wh- u rain-r fiii,m has .fiins~qua] to the AR coeffi<-ients obtained as (lescrjbtirl ab',ve. 'Pie

residtial Tim11 ,'ri,-, ,,,II be :xpr,sodt as

71 ) -Y(n) !-N (1)Y(II 1). j32)

~irlst02) till,, j 1 1, wc obse rvo that the residual series is an MIA process if A) k) - 4(kJ), and hienic,
the, AWM A ca-e r-hices ti. ti NIMA ease once the .4)k)'s have been compuited.

D rusrye alg, nt Iilii

III the, f1wg-uA lnie tie slutilon, A 4f (31) f.r order (p)(1). The recnrsi-,- alg-,ritin f r
s-Iving (31) 1,cni-seI tw, s-s- f r-ciursi-tis. because, (31 depends (in the- twc orders p aitd q. If Ie
i r,t tie if fr i dIrItg tbIf-nr-I fr--nit 1 t- p - I1. and thef, se nd 'no is, fr upd)(1a t inIg thei ',ri-n f.ic j 1
ti q - 1

I .qji-uOhm AI- t, a { . . ' . t re given with N being a. large integer. At trder (p.q) thl,

-juailitis A4 B I) bay-- bee lcul te.d. To update the ord],r fr-un 1) pq 1- 1) 1 q it, al-ia t-

I? I F 1H ii F 0, D; D, ). -(I-C. 4-il B f

A~~~ ~ D, 0 (! 1 j ,.

In -th, :0. v '--!flan''ll"~ If rIn?,t r ix I F, ( beoes .sinTip Iar, sto)p Ifere. To uipdate the .rder friti

I ],( I ''I p I- 1,. cajoltat, Ili,- fldiiwing rec ursions givetn bY

1 H (. 1) 1-- )' ( -1 B (p) 1 
A' ) 1,A .,()- (p A I) D ,.F 13-

A - A U- 1 )Di

W /f"I, ?1 1 ? 1'I) 1H A (I 4 (p(l A atnd F, GC H, are respectivelyv the, saie

:~a(.-v In tII, a(--v ' a-ca It-if F r A. Ap) beconie-s sinigular, Stop here.
A,~ a ra11 t's f-r 1, 1. "-I

I1 C t ( ( 3 . ); (( for Sorte q - 0. - 1.

"II it, il- v, Ag- nthll is valid uin-i'r tit., ridition that the -oefficient matrices, .Al 's are notisitigutlar
T . it, pr-"IP.s ti-n K-I aind luist b, stopped if ) - q A'. The proof of its vtlid'ity is letigt by andi

-tlit tI1 A.,f- r ti,, ii- nsitigularitv 4f t Ii. three miatrices I - F. *.C . F . ;and A4, 1.(p) needed tI exec iite
il- alfz- -th 1

ir.l -I It.H t it!. fl1"I- ie pr-- t

I ,Ifieri l .1-I~ th ma.ut rix defltieI (nl-w (01), and F, ,_ and .4 _;(p) be reIspectivelY the

rut i'-4finer I illt1 . 1) V iui-aIiv.-l IT) n.
at 1'ridIr tIll, i- i i--ithat 11 and Niboth are, itiotsligilar. I . , C , (or, equivalent 1v I F I F

is 1i-tivitigitlar if arid 1t11Y If 11 , . is titisizigidiar.
to ob-nid~ tI,-t'litit .I t hat 11 is tionsingular, F.,. is nionsingilar if and only if Al *. - is ii- tsitigitlat.

( 1 p) is 1,iI lI'ig br if Al , is it nsingitlsr.

TV, A SIMULATION EXAMPLE
h ,]r I-l' . t , , -f 11i,' prpsd lproeidlire, it Ilas been imtplemtenited ill a FOlfllIAN .rgratr.
Ilc- iiiitiI. usar'- -arril d-,it fr several 2-charitels AP.MA models b~y the, A('OS20t00 conipiter. W~e

.rc --v1 f-n t 111i, 1. 1 nr-- ild-prideuitt -xprtietntia11y distrilitted randim deviates geni-rated f-ril th-

,iiiIr,,iln'- fi tit, Yit-t-a( l-ibrr 4f the, .XOS.20IU cutlilpttr. T, firid the, -'stifrtts C. tie','-I fr t Ire
pr.,)Itc- - -.I I.) cci11 -uctptiit sarmi- afte-r 10t0 traisiit tititSiiln with the AHIMA i-II. W,

f.k li I(-cmcvXI \Hi tw',kI, wich- is ;a 2 iniput. 2-iimot ri-tciirtiit pha- dvs--ii ies-i hI



where .1)i )s andl H)',( are prc~-t1, ill Talie 1. Tlt- ilu0es
4f the I ' are se-lected so that the svsteit is stable. iTble -

I 1 )r!s tt thir estittiated valutes. aI l Ie Il1 ) presenitts tile
psius Iolf th po, ), les a nd z ter,is of the oiriginial modelll t d K

tite ost imateti one. fleirequeitcy teipnses of original model ----

a itd th e'.i - jtinated ltie are h-wu ie n Fig. I . IlitI the Fig. I
'lid 11iite ( - ) rep1)reseit ts t he t r tc val ito -;; d Atted line ( -~
- - - ,Ite ii timtatcd values. F'ig. I shows respect ively the

gainls and thet- phases of thte (1,1 )-tli elt-ititus o'f the , iginal -
ii del anld the estimnat ed one. The graphs for ot her eleme its

atrc otit It te. The abo.ve Tables and Figiire im ply t fat the
est 1 itate rItmodel is fit ted well to the originual otie.

V. CONCLUSIONS
W,% have presentedl the pr ocedutre for estimating the coefrciett'Il ~~i< iili?

mat rice,, 4' fi ilt ichaairiel notitiinintimn phItase AR MV1A mioctels,
and giveni thet recursive algo rithmn fi r c al cu lat i ng the A R fF'
c-efficients itiatrices. A simuitlation examtple has been shiown 00

t-- illu.t rate- the results o-f the procedutre.

'rABLE 1. DVFFW l:' lNT MAlTi(ES zt(A)
AN1 H(1) tI TIl! OlMtIGNAL N100E 1

0,2 )1 ( 1 .000 1u i .000.

2 1 U2 ( 1.27(1 1 ()17 70 o m Fig. 1 (a) Gains of the (1.1) elenient of the
0._22n .', 0 (F) I . 10 riginial miodel and the estimiated one. (b)

F Phases of the (1,1) elemntt of the original
model atiu estimated one.

TABL IE 1I. ('0EF FIlEM M NAlT IWJi-:s . TABIL E [If. PIO(SiI.8ANDF Z1EROS 101? THEl
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TWVO- DIENS IONA L IlIGIIER-ORDEII SPECi'ITLI F'ACTORIZATION

NviTm APPICATION IN NONGAUSSIAN IMAGE MODELING

TI livl~t lv of Rol(lietei

Rolwi8't e. Necw York 1 62

Abstrct - '%\e address thle problem of modeling a III LeInl. ilolIdilwar siglial tIlllll llect>>ilf\ to eN-

given 2-1) higher-order spect rumn as that of the out- it 1.% a ITU1 thIT 110S Of all anhIit rarvk tn irI( anIS> ii p rref

put of' a 2-1) linear time-invariant system driven 13, r f\ owr. in t Ilis paper. we, are Inte(resteId Ilk1 Tinar In,1
d-

highler-order white random signal. This is pnsed as limil o -)toiwusaipoess hase(l onl its MY-. We
hilgher-order spectrumo fandorization problemi. WXe 1>1 ohis as a ll -o I ersl wt nll factoruzat on prol1 'hin

first discuss the existence and uniqueness of such a i.if all exal Iillealt Iilldl. ITii W .lit~ in IC.

fact orization. .A fast algorithm for efficient imple- i, filouino

nientation of the higher-order spectrum factorization
is then proposed. 'When anl exact factorizat ion doesw 8, ) I F> 7.F> J
not exist, this algorithm computes the transfer fuin-
tion of a inear titre-invariant system that approxi- >--e> i~S. i_ 2. 1, t~ IIm li ll1l-li'1r
marc mod'iels thle given hiigher-ord er spect rum func- >p-ctrufi of the I-) -.nrnal
ion. WXe present nonGaussian image miiodeling as an Itite r eof islprIStivthti-eardu

application. Slil ojdlitout forti lotte (Nisit(l OfI it solution to (1).
,Il(-sl- ar -t 5ttve) iii TlhIorl i I. An fi cfint alcagoit mm )*

cepjst ritn operationis d heii sucli a fact orizat ion cxi-l t s.c

ccslal projection mhil in, jlv(Jp(d it) 1ii6' pup-1 call 81-Il

I. INR ODUCT~~IiL2'lION I lze iss unrt cet a ((ltlitiotm. for tl(,linintiii Ill 1,1Ia-

.vSI stm i'Ietit ifi(8til alr Jiliasc irlclti.,truc ( tio a lt)
S ianal inodelimg is of' primiary import ance inl many sig- dctail 12Z. Fiiiall%. we aply~l HTe 11OS fintori/.at ion l

iia1 processinig applicatiotis. Signial modeling, ill the geul- nitlnnl tol oltiln a nulliniiiiiiinuii 11551 U H iodl ftll a real
eral sense. aims at (-((lstr-tct in, a whiite-noisel driveni linear innua(te.

tI le/spar. e nvaiiiant systeml suich thfat f lie 7u1 -order spec-
rin Of its, (ilt 1 iit Itatchies thle rutiinlIr spectruimi of the I1. PRELIMINARIES

"iveii sil.l htoti Iil inmagn it Title and inl ph~ase. Classical fll-
("i ritncl odels 1lve Ieen developed to mlatchi thle power III tlhis -ect ioti, ne pire-sent somle prelitniiiar ,v dlIlitiit ili

I fill of eigi veti signal. Since the poe spectruin dioes ill1i lettititas. hehore formially sltin g illnr I Illt lie ti-t\

11(1-!i- ;g.a! t''l- tat ;arp based oil section. We utse fte terims liighdier-oole anid 0ind iin-
i f 1 powt- 1'1 sI I hi h a v; -1 ai Ir aryv phIia se. t c(. lla IlIgea,1-alv to indicate thatl Ilie ordIer is greater, 11a orii I

Siittiali sl moii hasc ()51i on 1igher order spectra is espe- (-(1to Iwod~l wlare secotild-otder Spiectruimn co(rrespnd~s tf)

(v11 P 1-1i al~t. il ill,11- folloil ti cases: Ii) If tilie process is I I Iil~c II iii. We. refer t ie( readler to j:31 for t In(le lt in

TI -t ~l, a~-8 i.a Ii tiea iIwill wjt Ii uniquet pfhase (Ii p tit (fit t a0 I let n~l Innfient amd t.enlIolle ainln of a 1 I)
8i (Ine-mri- e-o ta(to~rt call he( olitaitiell hased oil Hte higher 18!lldoh li mal. [Ie I(ledfitit il of h1i"iizet-orldlr ciliiilaiits cill

( Iw( - IT;, 10 tIS Ilat tilmilclies I lie tiagnitud and) ul phlase Ill (Ntiildh-I TO t wIo-litIIlciliioIlIa s'itials stilciv t((ii\8iihl\ lx
(atltlii~ Psof'ft, (givenl ulglier -ollr(I' spectrium. (ii)( If the Inti~lidl- ";1'11lg t It?, , i 8> anl i111rl- pail lk-,
Titl mIf. is (if-sit ed I ohe (IitiI I)Y airllhof hr(Ier wItitI \\(. dlwlll I t,-Iilr liilillililtlt ofalth n''-nrdei will(-->eimse

lDeli itit ioul: I /I i 1i -Il/ I J If ITT i o (f wt II -((ti/l I w/I/ -

-1p)IIf- l(I fIIl Ill I II aIII2II N( F4 ?II /./ C i f (/IIIZ() IT) ~{ , r I.,l. fnilI(II,
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FOURTH ORDER STATISTICS FOR SEISMIC DECONVOLUTION

T.J. Deeming

Digicon, Inc.
Houston, Texas 77098

ABSTRACT

Two approaches to using fourth-order equal in expectation tc the

statistics for seismic deconvolution autocovariance of the wavelet. This
applications are described. The first, autocovariance is then used as the basis
oldest, and least successful, involves for wavelet estimation and/or
an AR wavelet model together with a deconvolution operator design, using
maximum kurtosis assumption about the well-Vnown Toeplitz recursion
reflectivity spectrum. The second algorithms.
approach is based on a linear system
continuous time model for the seismic The distinction between AR, MA and ARMA
wavelet. producing an ARMA model in model wavelets is often not carefully
discrete time. The properties of this made in the seismic literature. Most
model lead fairly naturally to an traditional deconvolution methods design
estimation method which uses a fourth a finite length causal deconvolution
order statistic of the data to estimate operator to apply to the trace [], so
both the AR order and the AR component that the wavelet model is implicitly AR.
o

f 
the wavelet. The method is exact for

noise-free synthetic ARMA wavelets. In These methods involve second order
real seismic data, the estimated AR statistics of the seismic data, and
order is surprisingly small. corresponding second order statistical

assumptions about the reflectivity. When

second order methods fail, the natural
next step for seismic deconvolution is

1. Introduction to go to fourth order methods. since
reflection coefficients have nearly a

The convolutional model of a seismic symmetric distribution about a zero mean
trace describes the recorded signal, x, so that no information about third
as the convolution of a wavelet, w. with moment of the waveform is obtainable

a -eflectivity sequence, r, together from the data.
with additive noise:

The introduction of higher order methods
xt= E wk'rt-k + Ct (1) has been motivated partly by the desire

k to relax the minimum phase assumption
about the wavelet, but also by the

The seismic trace is a record of earth observation that real reflectivity
motion, either velocity (for land sequences, as obtained from well data.
exploration) or pressure (for marine have a distinctly non-Gaussian
exploration). It is sampled at a finite distribution. One aspect of this is that
sample interval which is usually 2ms or they exhibit a tendency to sparseness.
4ms, and contains frequencies roughly characterized by a kurtosis larger than
from 5Hz to 100Hz. Seismic data are that for 3 Gaussian distribution. A few

significantly band-limited, which causes fairly large reflection coefficients
difficulty when algorithms expecting a corresponding to lithologic boundaries
fully broad-band spectrum are used. in the earth are separated by regions of

low or nearly zero reflectivity. The
The system identification problem is to first fnrirth-order method described
estimate the reflectivity sequence. The below is an attempt, largely
standard model of the reflectivity is unsuccessful, to exploit this
that it is spectrally white, so that the non-Gaussian sparse character of the
aUtocovariance of the seismic trace is reflectivity.
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The second method grew out of a desire possible. Unfortunately, the zero phase

to understand the physics of mininimum form of a wavelet is not necessarily its

phase, particularly as applied to maximum k'rtosis form, and this

sources for seismic exploration: what technique further requires highly

physical properties of 'uch sources non-Gaussian reflectivity statistics for

determine that their output will be its success [6.7].

minimum phase' This work has been

presented in detail elsewhere [2]. While the idea of maximum !kurtosis

processing is not quite dead in the

seismic industry, it has never become a

2. Maximum kurtosis deconvolution part of standard seismic data processing
practice.

Introduced by Wiggins [3] in 1977. under

the name "Minimum Entropy

Dncn' volution", and subsequently 3. Linear system model

modified by various authors (see Walden

[4] for an excellent review), this In justifying the use of minimum phase

technique designs a deconvolution wavelet models for seismic

operator so as to maximize the sample deconvolution. the claim is typically

kurtosis of the processed trace. In its made that seismic sources are close to

original formulation, an un-normalized minimum phase. It was in the attempt to
:urtosis was used, called the Varimax understand what physics of the sources

norm: themselves might justify (or disprove)
this claim that the present

= y
4
/(V z)z (2) investigation was begun. Details are

Lgiven 
in [2].

y is the result of applying an operator.
ftoth simi tac:A (marine) seismic source generates an

f. to the seismic trace: outgoing pressure pulse, typically

y,= .x (3) measured as the received pressure in
k -k bars at a standard distance of 1 meter.

k This is the source strength, s(t). The

mathematical ingredients of an
The coefficients of f are chosen so as

to maximize V for the output trace. If f appropriate physical model of s(t) ca.I
be expected to be: (1 .fl differential

is constrained to be causal of length m

points, then the wavelet model is equation oh-y2J oy s(t), the equation

implicitly AR(m). In practice, the .nLaining coefficients which are

constraint to causality is nnt usually related to the structure and design of

made, since V is r-mvietely insensitive the source; (2) A specification of the

to tiii- shifts of the data or the firing mechanism of the source. In

operator. mathematical terms, this will involve
initial values for s(t) and its

The practical implementation of the derivatives; (3) Specification of the

optimization typically involves an sample interval. At, at which the output

iterative procedure starting with an will be recorded.

initial guess at f, and there is often

difficulty in getting the iteration to The simplest model with the above

converge, as well as sensitivity to the ingredients is one in which the

starting form of f [4]. differential equation is linear with
constant coefficients. If such an

There are many local maxima relative to equation is of degree m, then it can be

variation of f. Worse, the more degrees shown [2] that the sampled output is

of freedom are allowed (by increasing ARMA(mn) with nm. In z-transform

the number of components of f), the more notation

the reflectivity will converge to an

unconstrained local maximum kurtosis S(z) = P(z)/A(z) (4)

state having the samples either zero or

a constant value [5], which is where B is the MA(n) component and A is

geophysically unreasonable. Only by the AR(m) component.

severely limiting the number of degrees

of freedom can this condition be The minimum phase character of A(z) is

avoided. A recent variant of the guaranteed, for any sample interval, by

procedure determines a single phase the physical stability of the linear

rotation to maximize the urtosis of the system, while the minimum phase

result. The idea is to generate an character of B(z) depends on the initial

effective wavelet on the proceased trace conditions, and can also be changed from

which is zero phase and as "sharp as minimum phase to non-minimum phase (or
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uLce-uersu) by changing the sample applied to the system autocovariance.
interval. This is potentially quite a rather than the system output itself. In

serious problem for seismic fact, as long as the lower limit of the
deconvolLution processing. sum in (9) is greater than or equal to

m, we are free of interference from the
In seismic data, the source waveform is MA component.
not usually available for analysis, but

a reasonable estimate of its To compute D, we use the autocovariance
autocovariance can be obtained. It is of the seismic trace as an estimate of
fairly easy to show that if s is c. Since the algorithm is essentially
ARMA(m,n), then its one-sided determining the predictability of c. the
utocovariance. c. is ARMA(m,n' ). with Zero laq value of c need not be used.

The zero lag value is most subject to
n' = ma> (nm-l) (5) the effects of random noise, so that the

method is therefore relatively robust
In particular, if n:m. then n'<m. against random noise.
Furthermore, C(z) has the same AR
component as S(z). but a different MA We solve equation (9) via an LU
component: decomposition of D. We do not know the

order, m, we should use. However, the LU
C(z) = B'(z)/A(z) (

6
) decomposition of a leading principal

submatrix of D is obtained by truncating
It follows that if an algorithm can the L and U matrices of the
determine the AR component of an ARMA decomposition of the full matrix.
waveform without being perturbed by the Therefore, provided we compute D and its
presence of the MA component, then we LU decomposition for an order equal to

can find A(z) by using the observed the largest value of m we want to
one-sided autocovariance as the input consider, then the solutions for all

waveform to such an algorithm, lower values of m may be obtained very
easily. Furthermore, the decision as to

We use a fairly straightforward the appropriate value of m can be made
least--quares approach in the domain of by examining the diagonal elements of U.

c. The application of the AR(m) operator and stopping at the value of m for which
of length m to an ARMA(m.n' ) waveform the diagonal of U first goes to zero
leaves a residual pulse of length n'. (subject to some numerical tolerance).

after which all samples will be zero. Thus the algorithm both determines the
Since we know that n'im. we define a coefficients of the AR component and
measure of the result of applying an AR also estimates its order.

operator to c as

N M

-ak'cLk (7) 4. Fourth order statistics and the

tzrm k=o convolutional model

where N is the upper limit of the index The algorithm can be viewed as second
of c to be used. (N is potentially order, with the essential data statistic
infinite, since a process with an AR being the trace autocovariance. and with
component is of infinite duration.) The the statistical condition on the
values of a are then chosen to minimize reflectivity being that it iS
E. subject to the constraint a =1. This second-order white so that an accurate

leads to the equation estimate of the wavelet autocovariance

is obtained. This autocovariance
rn estimate is then subject to further
ak' = D() (non-linear) processing to determine the

k~j coefficients of the AR component of the

where D is the matrix model. (There is nothing unusual about
non-linear processing of an

w autocovariance estimate. That is exactly
DV) = C.ci j  (9) what any Toeplitz recursion algorithm

, does.) From this point of view, the

algorithm is merely a modified approach
Tailing the lower limit nf the sum as m to estimating the AR component of an
avoids interference from the MA ARMA waveform, given the autocovariance

component, which we [now tn be of length of that waveform.
n m. This treatment of the end

conditions males the approach The algorithm can also be viewed as
essentially the same as the covariance fourth order, with the essential data
method of system estimation [8]. but statistic being the covariance matrix of

... . . .. . . . m m N m193m



the autocovariance of the data. From where we have dropped the summation over

this point of view, success of the t since it yields only a multiplicative

method requires that D as computed from constant. Using (10) in this exnression.

a seismic trace be equal in expectation we find that, while there is a leading
to D computed from the wavelet. term proportional to D, there are other

terms present which do not generally
To analyze the method from a vanish, even for a Gaussian reflectivity
fourth-order point of view, we sequence. Therefore the sample estimate
investigate what happens if the fourth of D is biassed. This result could be
moment of the reflectivity has the form anticipated from the well-known fact
of the fourth moment of a zero mean iid that covariances at different lags
process. In this case, the the fourth estimated from a single sample data set
moment of .f may be shown to be are correlated with each other.

X X x X 5. MA component estimation

abcd t-a t-b t-c t-d

The fact that the MA component of the

= 2 Ec c + c c + c c + ARMA wavelet arising from a linear
ab cd ac bd ad hb system model may or may not be minimum

(-) ] (phase, depending on accidental"

parameters such as the sample rate,

where implies that any method for estimating
the MA component must involve statistics

Cb w k-a wk-b ) other than second order. The estimation
k of non-mininum phase wavelets from

third and higher order statistics has
is the wavelet autocovariance, recently been discussed by Giannakis and

Mendel [9]. The symmetry of the
Kbd = k wk_ N W k d  (12) reflectivity distribution implies that

k we should look at the fourth order

statistics of the data as the next

is the fourth order moment of the alternative.

wavelet, and K is the kurtosis of the
r If the reflectivity is Gaussian, then

distribution of r. K= and, from (10), the fourth order

In computing D from a seismic trace we data moment contains no information
use the sample trace autocovariance in concerning the fourth order wavelet
place of the wavelet autocovariance. moment, and hence no information
This means that we estimate D (except concerning the wavelet phase. If the
for normalizing constants) as: reflectivity is non-Gaussian, then some

phase information concerning the wavelet
o x .X (17) may be present in the fourth order data

Lmoment. This information is potentially
of use in extracting a non-mininum phase

with MA wavelet component.

X k _ x (14) Practically, a one-dimensional fourth

t order statistic will be the easiest to
handle. In terms of the general fourth

(using a hat () notation to indicate order auto-moment defined in (12), the
only possibilities for a one-dimensional

sample values). The expectation of D is wavelet fourth-order moment are:
therefore

K , K * K

< = S SS~ ~x (15) OOOT' OOTt' OT'

The first and last are essentially

Writing s = t-u, this can be brought equivalent, being time-reverses of each
into a form which explicitly involves other, while the second is the
the fourth order moment of x: autocovariance of the square of the

wavelet samples. Since such a function

could not distinguish between a waveform
D 7 - and its time reverse, it is not a

promising candidate for extracting phase

information. The only one-dimensional
~ I lu' (151 possibility is therefore:
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E w .w (17) A(z= 1.0 - 1.406651 z + 0.755784 z2
t (22)

To estimate K we determine the This merely verifies the correctness of
oooT the algorithm for noise-free data.

sample one-dimensional auto-cumulant of

the seismic data, derived from (10): Figure 3 shows the autocorrelation of a

- synthetic seismic trace made by
0 T X 0 .X .X (18) convolving the original pulse with a

1000 point simulated reflectivity series

using sample values in place of generated as a non-Gaussian distribution

expectations. We have computed this with kurtosis K=4.5. The autocorrelation
quantity for synthetic seismic traces shows slight deviations from that of the

and can report that, while it does pulse alne. When input to our

discriminate between minimum, ma":imum, algorithm, the estimated AR parameters
and mixed phase wavelets, the were
disLcrimination is not strong, and 2

requires lengthy, stationary, highly A(z)= 1.0 - 1.4432 z + 0.79T5 z (23)

non-Gaussian reflectivity statistics for

its success. In this respect, the method The discrepancy between this and the

suffers from many of the same problems true value gives some measure of the
as the maximum kurtusis method described effect of bias in determining the fourth
previously. Details of this work: will be order matrix, D, from real data.
reported elsewhere.

Figure 4 shows the autocorrelation of a
portion of real seismic data, taken from

6. Data examples a single shot record in a marine survey.
This autocorrelation was input to our

UnliLe the maximum kurtosis method for algorithm, yielding the surprisingly
which it is easy to generate examples small estimate of m=4 for the order.

which fail, the algorithm described in with the following AR parameter
paragraph 3 performs exactly on estimates
noise-free synthetic wavelets. It

2 3
selects both the correct order and the A(z) = 1.0 - 3.59 z+ 5.10 z -. 3 z
correct AR coefficients and is quite + .89 _4

stable.

Figure 1 shows a synthetic pulse of According to the theory outlined

character similar to a real seismic earlier, if a linear system model is

pulse. It is a sampled version of the applicable to such a system, the effect

signal of applying the AR(m) operator to the
autocorrelation should yield a residual

s(t) = e-O't.sin(2Z.f.t) (19) pulse of length n' m. When the estimated
AR(4) operator is applied to the

givng an ARMA(2,1) sampled pulse [23 autocorrelation of Figure 4. the
with residual autocorrelation shown in Figure

5 results. Note that the autocorrelation

-6. At is effectively reduced to zero after a
+) Ee2. A 2 small number of samples which is.

-21e.A.z however. n'=4 rather than n'=-..
+(20e

-6.At The surprise in the size of m comes from

B(z) = re .sin(2n.f.At)].z at least two directions. First, standard
deconvolution practice typically uses

For the example in Figure 1, 5S 35 much higher orders - operators of 50, 70

sec- f =25 Hz, At 4 ms. yielding or 100 points are not uncommon. Second.
a real-world marine seismic source is a

A(z) 1i.1- - 1.406651 z + 0.755784 z
2  complicated system, consisting of some

tens of airguns of varyious sizes
B(z) 0.51C)996 z arranged in a spatial array for the

purpoc of suppressing horizontally

traveling energy. The oscillation of the

Figure 2 shows the autocorrelation of air-bubble from an airgun is known to be
a highly non-linear affair; furthermore

this pulse. When this was input to our
there are non-linear interactions

algorithm, the e!;timated AR parameters thr ar no-ier neacos
between the guns in such an array. It

were



thereore seems ( prtoz unlilely that a

low order linear system would describe 1
such a system adequately.
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H".'n rht.: weiur'e i < I n theory " 1)- h c 05) ,however if I %(k)l
,'I !,O-SO~ S. ~tl lit) is ot thiro, otost white then many extra terms

are added to h c 0L) as seen in eqoation (11). If
Mn - n- 7 the order o f I incritases , there will he many

mo rn t erms i n 11 I 3IBu the secind-ocr'

v r. t~t C 1) AC ') r(I 11 -oof X(t) is

1l_()(+ht)Rv(2) (12)

S,

q) (8)Comparing (11) with (12), it is clear that the

error caused hy third-order correlation in
third-order hased algorit-hms is larger than the

1"o! re lat 1011 error cause:d by second -order torte lat ion in
7 . I 1A cccl - second- order mcmeii hased algorithmus.

0, ,! (0' f Ci-

1)I a scha (q h) i s*'-er-. sall I, Tte performa!'nce of
th MX the est-imat ion algorithm sill degFradet seriousl.

plo'l; > 1',!s' iilc'it solu~- this is due to t he e rro r i n c -q. -q wh
71 .n . ctjrd nI.Uel; effe ts all ht :)

t: he ' (=. . q) as indica-.ed 6v ci in. ion 8) -

* 0O're ,fo'

s*-.i-Ed pstantir 4 The Dcoot'ol at iornf ot c-i %I__ i p1e

Vr -y ,, ll!t forh

I '' 11In the above section .. .5e c1l~ siti1 that if

rh te we treat a correlated noise slit a cis. heii
erosresult. The deconvoic ion 1 ducthi-m for

cor-related input signals are now deve loped.

CA SE (a) ARB iotip Ie lit. fe r ce

it. pr"I it oowd Assum,.e t-hat lv(t); in (9) is a iOlitr"'
i~r co AP(i) series c.

i. W i n f tOe

wher s )t is 1th-ordler whitec no~se and c is a
-ivsmnall constant .TIrefors

c ~ ~ ~ ~ t h a ;' ]
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C- S il? M Il, ' il 1,1 ncrter C1 I,":correlation when (8) is Ubad in deconvojo-

Usun, rh,, ima': int ") is .on MAK ) pro- When using1 third-order .striistics for
cess1' DSP, the stability of random numbers is more

important than when second-order moment based
7 i'-. 1l~y 1 1 algorithms are used. Sometimews, one or two

extrerniy large suepies destireo. the perfor-
mance, although me ay have used thousands of

iih it 10 samples.- Simul ation resul ts~ idicat e that the

1 results are not as stable as the secondi-utder
-. 0 )'st-ilmoment based algorithm, this is because the

n random numbers ame nor third-order station-
ary, see Table 3.
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NONLINEAR SPECTRAL DECOMPOSITION OF THE
DRIFT RESPONSE OF TETHERED OFFSHORE STRUCTURES

SUBJECT TO NONGAUSSIAN IRREGULAR SEAS

S. B. Kim, E. J. Powers, R. WV. M iksad. F. J. Fischer
t

, and .J. Y. Hong
2

College of Engineering

The University of Texis at Austinl

Austin, Texais 78712

ABSTRACT 'I he alproach rests upon01 'Vlt er ra nonliear SystenrI mod-

elfliiig[51 anti inniolvative IIIilizaticii oif liolyspectral61. partic-
lit- it ilizn tiecocet of his )ectra andl qarati rn ularlv digita d Isjpect ridaaissis. ('orupare'l t ilho l

to", fuictions a ri nonlinrea r coherence, we are able o, spec- earlier woik oiln ronin iear.sy tcn miodeling w here thle inrput

t!a) v dco iiposc arid plant ify thle srirge response of a ten- waIs assumled to be ( aluusiaui. We have recentl1y dvelopedI LI)
sileg platform jILP ) into its linear and quadratic. lix a new approach wlhi cl is valid for exc it ation wit h arilit rarv

n ne ia r (orriponicrts and identify experimientally the low- amiplitutde statistics ani I l-it rary spect ral denisity-. This is
1*reqiiuilcv wave drift, force iasmuteirglrno as- aii imriportanit hrarti Ca! ad vauie sinice sea wave excit ationi is

Siall sea s;tate. Thel( approach is demonlstrated with the aid not neces sailyv (iausiaii, due to prior nonlinear wave inter-

of ('xl)eriirieiit al da~ta of '1LI,1 suirge motion obtained from a act ions, for examplle.
>Ca1led f 1:. I) nilolel of a prototype TLP anchored in 1500
feet of w.ater. ' lic proet i cal itv of thle approa cl h as been st udied by u1tir-

liiig it to nmodel( an( ric leli ct" thle nonli near low -frequiiciiy

11rift oscillation of a'171.1 P (Tnsion Log P~latform) subject to

iioii~aussian irregular seas. Thle experiments were carried

1. Introduction out inl scaled Miodel wave basin. The I irne traces of the ini-

In claivevreentatiivtcaiii (-,tigtioiso~vaea((1- put wave hieeglit arid the outpuilt surge motion of thle TLPI

- - estgatare shown in Fig. 1 and the-ir auto-power spectra are shown
"d e<tancand lateral drifting forces anid moments of s'e's- iii Fig. 2. Not ice that thie power spectrum of the T LP surge

~cl l'q ;oraicfrequency response functions'* (QFRF) ntin(i.2h niae infcn epnem w rn
\%' rca lclated in dhescrihie such quadratically nonlinear plie- ciol Fqenc ha1)ndics. igniupercand aterou id 0.1 prll

noin ora. 'Ihe QE RF is intrinsically a two dimensionat fiinc- ia r-unNbnd.'l(,tpebndt.ro d01 z

ion f feq eniv ad efectivev uiodls tie~fiiienv" ith Corresporids to the same freqjuencies present in tile irregular

vlihpair s 4f frequencies present in a random sea wave ex-

lIt alioii intecract to, yiel(I suni and dliffererice frequencies in

ti-r~ -(-)(,sd- 1Knowledge of such QlfRf's is (desirable in a) 30___________________________________

"',rh predict" the quadratic nonlinear force, nionierits, 1

atilr'~A anle f vesst Is and tethered offshore st ructures as-2
%%eie ill raniro'ni seds.0

\\ I iie llevdlopc(( a digital software techniqiie[2.3.4] _________5________

i.I)- ii'ol to compijite. fri ..peinta daa 80 UP .i 140i 160 t180
to . V reso[nse flunctionls, Which we refer toTn )

11 ''tda i rr-$ r fuinctions (QI'.)' arid nonlinear co- b) ____________________________________

n jn.I lhe albilit *v to cciripiite suich QiF's and 1
0 i"'la'(f timidtins firm experimienital data, rriake

-- ihi 'li tt ii'' ie xpurinnielit andl theory Closer to-

rld, I me I lie proh'alilitx oif de velopinig twhiif

i-w'to jr,(lilt tw linon1
liear response (f ship

d i 11( in (red 41fliorc Jtrllc ires t,- iiregiilcirIX 12 14i) 160 Si

* 1. i liloY. tm l j .: 77111 Fig. 1. Measuired time series of an inputloutprr of a TLP
1'r-,I -mw, Au~ mai. 1 x7L, 7,73 1system. a) Input (sea wave), b) Output (suirge motion).



,X1 , lptIini Fig. 2 l). thu s suggestI ing a l inear res ponse. I Ilui of te III II. T I q I I itItity f, (t )is t I e linear wave exci-
lin 1i Iir. I IT has a significant surge response at ta ion force and f 2(1) is the second-order wave drift force[8i.

4 W i~i-:xof(.17 i' oprxnaex 0001 r~ pto Consideri ng t he ti nie delay bet ween wave rneasurerncnt and
!\ po. lvi i, ,-,, re-pondIs to the surige nat ural fretiernv of actual waeai,\nte lslcdTP f 1 rdf(

Ti" I t) Ilist i not l)V054iit ilil i l ave excitaliotis. which Cat he writteni using the linear and quadratic Volterra func-
a rmIHar espnse tliutls as follows

a) _______ b) ______________ 1 ) =fI( - T))(r)dr (2)

10 012(1) = JJ ;1(t - Tl,t d 2 XTiX7)i, (3 1:
li0 wlicre x(t) denotes thre time series of the irregular Wave amn-

plit ude. and ck( ) and .3(11, 12) are the liniear and quadratic
10 Volterra kerneils, respectively.

4 ______________________If' one lakes the Fourier transform of the eqluation of the
0 .5 10 0 0.5 1.0 maotion after substittting Eqs. (2) and (:3) mto- j.We get

Frequency [Iztl Frequency IHzl

F ig. 2. Auto-powAer spectrum of an input/output of a TLP VLL~ T, \' -' ) T2 7(w I,- 2)sytm ) Inputsea wave), b) Output(surge Motion). i

lok~in a HieImplull of view, the svstenlis are non inl- Wiluele -'(V) (-c), T1 (,). and T2 (-' 1 w 2 ) are the Fourier
'' l' v. OP is %vixiak second I-o rdecr force (the so-cal'Za trauisfortus y(t), x( t). o(l), and 3(til.t2). resp)ectively. L(l )

iiv 1luet.xviciispootinlt tesn~ fte is ! I l and 6(L,;) is tihe Dirac delta funct ion.

lil.exerte-I ott the moored stri'K rns. As a re-
us: , iJ q(idrat ic-type nonfliearliv pairs of freqtuencies Thuis process is indicated schematically in Fig. 3. *The

Ili i ii I t he ,ea wa-%v excit - on inix to formn sum andl dif- I 1.1 is acted upon by Wave forces produced by linear as
.1 e" lie ii cvsec i-order force comiponenits. Although \,,el ats qtradrat ically nonlinear mechanisms. The TIP is

tl :o -rI.orce comtponenits m-ay he relat ively Weak, ass lued to respoid in a linear manner to the imposed force
Ii-ill,"'. cliieiiiv difference complornents which lie Within hie]l

'l,,i-IOiiatt 1andihlt of the ILP result in large responses. (5)~~f- ~
II'- r( fot'-inc t Iliesvstniil at its resonant frequencies. !J((0 ~ =-)dj

xvltro f(l ) = f1 (1) + f2( 1). and 1(t) is the inverse Fourier

transformn of L(,,e).

2. Q2uadrat ic Volterra System-i Analysis of the TLP
Surge Response Subject to Irregular Wavesf

I i fit, Itlxiui equal [il of m1otion of a -1LP V%
I'ow ii, f nioulinea effects such I. vis- 'ysiniui(I

11 i- ) i- i,-quencry lelpetulii added I li ass iir4O(Qdauc fi
Wave Input Wa. I11f -L

' ill d Ipi fl oi ni at di x i f ern m4 i-4 Ia 
"21ttit thc bYn Illeartiuini thc3 Sheai inaio

Fig. 3*Shmtc ii~mo a second-erder Voltera model of
I o l ~x iuWh koc- TLP surge response with respect fto irregular sea wkave exciaion.

11 -II; . 'n i c ,I l. i I l

V/ i I T:

1, 0. -



Il~tu L~o) 1(u) .51 + St, + Sq(1.3)

11, (J. k) L (n) T2(j, k), j +~ k n Whiere.

Iwhere T, ~i ).T. (j, k) anrd L (it ) a re thle disc rete Fourier t rans- jjI, =SIl
formj) uo l ). I1 l. t ). andl -I't). respectively. (t ~ ~ ) 2 ru

lie1 Mtodel out put 1 (ii) can hie rewritten usinig vector J=,()= Ic[ -.12~~)J~jn~iB~r)
not ationt as follows (N-)1t2 (N-)/2

Y_(n) = Hiy?)X(n) (7)(n = =" k IJ=)- ~ kuC~.

whecre thle hold s 'riol denotes a vector quant ity. an~d 11(n) Here,.5S1(no) is the mean square value (that is. the "power")
atil X(71) are Y;-een ;i of the TLI1 sway response at the frequency w,, due to the

linear wave excitation force of tile irregtular sea, yll IS is I
Hi ) [fr) ). 2 (n)[(8) contrihution to the mecan square value due to the quadratic

(n )= [Y (o~ X~(~ )](9) wave drift force of the irregular sea, and Sj ( n) is the con-

trihut ion due to tile coup~ling of those two forces. This con-
wiethe Siuperscri pt 1denotes thec t ransp~ose of a mnatrix pling exists when the irregular sea is nonGaussian. (Note

an11 if( teSUh)SCript T andl '2 denote linear anid quadratic, that in the Gaussian case it will be zero, since BJrr(n ) will
respectively. The Ph iteient~s of 112(11) and X,( n) are he zero for Gaussian irregular seas.) Furthiermnore.S(it

c-an he either positive or negative depending on fihe phase
I 3ri)=pH (m i + j. n - r - j )(10) relationship between those two forces.

where 0i < j 11 V- )/2 , in = (n + mod[n,2[)/2.
atidi = 2. exeit When 7? is even and j = 0 where it I 3. Quadratic System Coherence Analysis

InI a single-input linear systeni, it is well knowvn that the
l ie opt inum solution of 11(n) in Eq.(6) is well known, cohlerence funlctionl ; 2),) is 'defined as

aldis 'i yenl as

Wit), (X'0i)X'0n))-'(X()(n)) - Sr()y(i) 5)()

Sro) C,~ i) I I 5 ~~it (12) Thie oriiinarv conceplt of the coherence function is valid only
B .. Li)C .Bx(I for a linear system. The term ~2~)definied in Eq. ( 14) rep-

where \ denotes Hlermnitian operator. Sr;(ni), B_(ni), anid re~sents onlv tilie lintear relationshtip between tihe itiput .V(,,;)
C_;(n) are thle auto- power spectrumn, the column -vector of at frequency w and the output I()at thle same given fre-

the( tout o-hispectrim arid thIe It h order cumuilant spectral q ieic. imts. when more t harn one frequeric ' coniponenit of
tuuit rix of thle input, respectively. S,,l) is the cross-tuower till( input couple and intera.ct in a nonlinear sy .Stern to pro-
.pet runi. and 8

5;( it) is the column vector of the cross- ducenew frequencies inl tin'out put (hla rmon ic genera tion. or
hi~pctni iii bet ween thle sea wave input x(t) and the sway frequietic v coupling), or when a single frequency component
lf'>,olli e ouitpilt y( I). of thle iripu t is split anid appears ]in thle outplut at more than

orne frequenitcy ( stt1i artnon ic geniterat ion or chaos), or wll 'i
Whei iiilie inipiut statistics are Gaussian. the inpttt auto- miure tihan one frequency compottnent of iniput interacts anid

hi o ut i 1111 13 ,,- arid the off'-diagonral elemrents of C.... (for ,eiwera tes oIttpitt at mt ore thtart on e frequency (scat enrig.

I-/ A' aI itZero SO that tile nMatrix (X*(n )Xt (7t)) becomes Chat is. theC cohereceIC fundC ion definecd iii Eq. (14) dloes tiot
dIiu hi I iit hs. the linear anid quradr-atic transfer functions repreSetit O l roper re01lt il between the input anid thle

ill 1w -st tmtated ittdepentlt arid Eq. (12) is reduced to )it P111.
lo %e! kniown et xpressions of I lie linear and qutadr-atic tranls-

ft',5n t ois for (Gaitssiat input [:31. lit t eiieril. I liere atpplears to lie rio uniiqute way to tiefirte

aLI lueretCice futiCt iOtt Which relireselit s all possibile nonlrlirnear
-v, aN r~ii t th e getteral (nl rtortlatssiart1) case andI 1''lltiotliips hetweri iriput arnd oitt,it Since it dlependls
-!fl; oie ttodelI oiti pit power of the qtiauratic Volt! ;ra at thle s sterit ttilill thlit oneo uses. However. for weakly

11".1ti, thea ii ratisfer fictiris we oltairtel iii Eq. (12). ritnilnear sysinis. otiecart toftet repre _c!'u tte systert usitng
I ilw 11

'h, (7) (9). the muidel output pouwer.,5(. is \htet ra fittict iottal serie's, Ill t his (-ase' it is posiblde to ex-
ii ~tci tltile toticei of thle coliereulce fititetion to htighier order

uut11ilueti systeruisI. I his is i1otie bY also eN tetdirtg tile Con-

h t,( I )Y0 +i ijit)2 ( 1 ) ' *C 1 o f i l i i i i t v s l i t a . t r it s fe r f u n t i t o n s . c o li u r e rc e . a n d

-- 'J~it i j.\~ it)W 12(11 it2 (i)I io l Iit % i I i iit Ii h fratrI I work of aiVolttrier representat irn
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"r aiiil 1i , we( plot, tilie cross-blispectruiin cif the systemn.

Now, we call see the large peaks along thle line f, - f2 f.

A ll. fia iii rpre'tar oil of Ow ordinary cohierencie fiinc- fi h djlfercinee initeractioni zone, where f. is the surge natu-
'A Ii.ich crvc a> a hasis to generalize the conicepit. is al li cuency. Tliis indlicates t hat thle resonance phienomreia

I :1 fIlt rat to of I te iiiodel out put power (in the sense of )f the 'I LP is qunadrattically relatedl to the irregular wave amn-

Tlll'tl e(l Vatlue 101 unIiIt tulle) to I Ilie true ouitput power. jli LIV. Thie quadratic trainsfer fuinct ion is plotted in Fig. 7.
1i k ler t roeIt fuuI( t jell caii be geuieralized llsitig the abiove alli lagecAs are positioned along the line f, -f2 = fas

ft. i Ille Vic,"l(lle oterra sy~stemIl of I'q. (6) ill ie cros-lispectrni. However, the largest peak appears

iil Il 11yie Flom Eqev tLua ri i 13), we hit%( at~ low freq uency in the (Ii feren ce inte(rac tion zone. This sug-
tust s IHim it' thle wave spect ruth iiuoves to lower frequency

t2(1? + -,(1 hiailan ifi'I the svsteili retilaihls saine as we identified, th e

ul (1[ia rt ic iioil necar force inay cause considerable effect on
lle 1iLP.

o n) aiid "(ni aret Il( linear coherence

16; i,~t 4 Ill "CON1l olde V olteirra u vsteril. respec-

N ,ti I htI te teil; ii h (ol andi iil ) are positive,
I;, he'ildid lhY unIit x -.iii~ call) i hue positive or'

L- Iv i eiidiu' oil lte ph ii' u latioii..lip lietweeii thle

apt( iti ijiadrat jc ri-sponse. H owever. the total A I
c~ Iu I il iulih1l ii blouiided liv Zero aiid unlity. 91

-1. N onlinear spectral analysis of the TLP Suirge

1 !11'_ ii ile tI. P iticliriil ii i(0 t ofle (1:51) Fig. 6. Cross-bispectrum of TLP surge motion for an irregular sea.

;))1' lti ipritt Ill(- resulting" qilratic tratisfer

:-I- ie flilIi a a s. ale
1 

com ipare wxit ti t i'

-,ft( IIt )I lta id thle sn na- oitplit aire ploitte
I 1 ;11, C vl*( olilpariug" with lie frequenv~cy 4

I I) 1, OAz H/ %litre it ie Ii lear cohlerutice is close to
11I illci ip~-p ixxCI SPliii ItIl at the siirge natil-0

I a I inI ii I An o t I eriimr
v. 1!!i ~ t~t IlJ surge resuitlariue 9.

'ii i I 1t ,i, Iliar jilt eract ionl with Iilie irregular

a Fig. 7. Quadratic transfer function of a second-order Volterra model of
a TLP surge motion for an irregutar sea.

0 ()tit , iin qurantif , t Ili' riiilllear e-lTert withI respect to

I i wI I lv;r c , lst sig t lie coi ueht o f hicolie rence as we ds

Frei 1 1Cx JH/t Frequency [Itli] atl plotI lieiiil ini F-ig. , . Not ice that tIt(' qhuadratic coluer-

Fg 1, Cr,. flowr spe'ctrum oft sca lg 5. UCoheence sMteciruni of sea (.to ,pe 1) ii,( 1 u -(t) at 0.O11lZ and at -~ ().h I Z is Close to
-.ac'Vt P surge moi~on, "cIt urge mnotionf. '111a il zr',) I r'eslotkjxlv. w i ile the( linear coiheretice spec-
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I u l > I ) a p o ii a u s a i co s r i t h~i th e~ tI Ol l of lthe olerved surge mfotion S,(n) (solid line), the
kaboh e, spectruin frontI linear nmoide ats showni in Fig. 5. lt i inudl powe spe~5 )ct r inn u sinig thle second -order Vol terra

'Il, ou pled 1 (010re ice spec ti-nm +2 a these frqecie Iloll I)of Eq. 13 ( finei (lotted line ),arid the p e-
is lO apoiniia tel t zero. Thius. weq (oiud ha t fre ue di tt,1 oiitput power spectrunm using purely a li near model

1"o1 e (coars tlte lil(- at the surgeNoic
not ion of lie JILP is quadratically correlated w~ith he (i)(oriro edInS- A~ o q No c

re uihir seas at 0.070 jlz. and flnearly eorrl-Cated at u ia te linear nlaolel cannoit account for thle spectral peal. at
If/. I lit, tota cI oherence spectruml -12(ol) shown in F-ig. 8-1b, 0.07 LIz, though it is quite a good model for frequency band

wli is thle siimi of 'f) u -,2 ;(0o, and (0,is close to unt ciii ered at -0.4 lIz. H owever, the second-order Volterra
upIa07 l ugetig ht h lneran uarai61r t(iC, hellelicts the true power spectrum of the surge re-

t irrgI esi l~ a l Ii~eela a seco nd(- T is Ot' le nt ire frequerncy- band. One can hard lv
kajier \oullerra systerm. Note that although -,1(12 ) and 2(rl) iiot i- the differeiice between the true surge power 511Cc-
are greatu t- Ihan uniiity in some frequency bands, (11 is (oii iK;) an1( Volterra model power spect rumi 5~

Iq i 1inis. one C-an safely conclude that thle spectral peak of
liegi ie. thu tilIle overall im odel collerIn ce is less thlars or at

iliot e&tiudto OiC. ui re rotioin at tIle, surge natural frequency of the "U P
lllous tuua tooe ,(i aryt qn ad iat ic nonlinlear (jillererice iii Ierac kion

of if regI ha r wves, ilaielv wave drift force, while the b)ro~ad
a) _____________________ b)10 ul' peak at -0.h liz is a linear response.

E 4. Concltusion
ii .90

I.I \JExperimecntally we are( able to estimate the linear and
(n .t) (f) q~f i 1 quadrat ic transfer funrct ions of 'lIl response which one( (-arl

___________________ iiipare with thleory. and identify the quadratic nonlinear
0 0.5 1.0 0 0.5 1.0 nesalla 0ce response of a IAl surge mnotion subject to irregn-Frequency ltlLl Frequency lHzl lar lioni(aussiari seas usinlg Ilispectral analysis. WVe demon-

Fig. 8. Nonlinear coherence spectrum of a second-order Vol- sI rate the validity of tile results by inputting the. irregollir
terra TLP system for an irregular sea. a) Linear coherency se tinIii series data into the parallel combination of two
yl() I, Quadratic coherency (Yq (f) ), and Hybrid tilt ers characterized the I near alnd quadratic transfer fune-

2 () 2 fcoherency (y()-- -. b) Total coherency lif ~ 1 )+ 1oins. Thlus, we are able to decompose the power spec-
2 q trui of at TLP surge mnotion into linear and quadratic re-

'fq(f)+ 7'q f)spouse to thle irregullar waves and qu~antify whichI quadratic
it eract ions of tilie sea waves COlt ribute niost sigrlificarltlv

I t -ILP en ian ce res pon se. Specifically, tero o
-1he munge -pwr qulanutit C ies andlS( ) and the ()f quiaidratic cohereree is utilized to verify tllat the low-

-uuu' v li o $u~its "pred i cted" by-tle Volt erranmodel freqcyI cic resp1)o1se at the surge natuiiral frequnl cy is trill v
le 1,Ite l i ig. , 9-a- Not ice that the modelI surge power at qiiadlaI ticadlx nonllinlear respon~se. whlichl is identified a's

.it0.0 It/ 1 pnedomiiitii lv duie tofreqnlellcvlioart 'avae drift fore. Surch stildies siiktaritiate
it-.. ~ 111 p udIo juwer at - . 1 1[I, is liiailv due to the abilityv of tlhe quiadratic t ransfer fultion to corne-i l.

1 (ui Fig. 1)b shows -- rue" lamr spec- niodI tile iolliIr liem illsrl wleev i'eteg sso-
nit el withi the iitli-frequemucy irregullar seas is eomivt't e

ii;'! .\ i / A( 1K ,\N)\\IELGEM\EN1I

E r r Tn Id o idc I! ) c puV M T Ir P~~u~ u
C riuiu.iti MUM1 r rl' ntr I 1)( ).c fl : u in It S1011 C5t ,' ,

h- -'- ri ,\[an- potx it iU11
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BISPECTRA OF SHOALING OCEAN SURFACE GRAVITY WAVES

Steve Elgar
Electrical and Computer Engineering

Washington State University
Pullman, WA 99164-2752

ABSTRACT that many degrees of freedom can be obtained without
losing stationarity. This combination of many degrees
of freedom and high bispectral signal levels leads toAspects of the nonlinear dynamics of waves statistical stability of the bispectral estimates.shoaling between 9 and m water depths are elucidated The field experiment is described in §2.via the bispectrum. Bispectral signal levels are Observations of bispectra for several differentgenerally high, indicating significant nonlinear shoaling wave power spectra are discussed in detail incoupling. In 9 m depth, the biphases of interactions §3. Data with broad band power spectra show some

involving frequencies at, and higher than, the peak of
the energy spectra are suggestive of Stokes-like surprising similarities to narrow band data in certain
nonlinearities. Further shoaling gradually modifies aspects of bispectral evolution (l3.1), in particular,thee bphaes o vlue cosisentwit a aveproile the biphase. Similarities are also evident in thethese biphases to values consistent with a wave profile evolution of sea surface elevation skewness andthat is pitched shoreward, relative to a vertical
axis. Bicoherence and biphase observations of waves asymmetry (skewness about a vertical axis). Evidence
with a double peaked (swell and wind wave) power of excitation of modes via difference interactions as
spectrum provide evidence for excitation of modes at well as sum interactions is observed in a data set with
intermediate frequencies via difference interactions, a double peaked power spectrum. Low frequency motions
as well as the sum interactions responsible for (surf beat) are shown to be nonlinearly coupled toaroniclgrowth sh eas leow e f energy at frequencies closely spaced within the powerharmonic growth. Shoreward propagating low frequency spectral peak (3.2), as suggested by the classical(surf beat) energy is shown to have sta~istically notion of surf beat [Munk, 1949]. However, biphasesignificant coupling to higher frequency modes within analysis shows that the surf beat modes in the
the power spectral peak. In 18 m depth, the biphase of shoaling region are not 180' degrees out of phase withthese interactions is close to 1800, a value the envelope of higher frequency waves. Nonlinear model
consistent with the classical concept of bound long predictions of bispectra of shoaling waves compare
waves. In shallower water, however, substantial favorably to field measurements §3.3).
biphase evolution occurs, and there is no longer a
unique phase relationship between surf beat and the
envelope of high frequency waves. The observed 2. EXPERIMENT AND DATA REDUCTION
bispectral evolution is predicted accurately by Most of the field data discussed were obtained at
a model based on the nonlinear Boussinesq equations. Santa Barbara, California during the Nearshore Sediment

Transport Study experiment conducted in January and
February 1980 (Gable, 1981) and at Torrey Pines,
California during September, 1980 (Freilich and Guza
1984). The observations used in the present study
were obtained primaril§ from near bottom mounted

1. INTRODUCTION pressure sensors, located along a line perpendicular
to the beach, from approximately 10 m depth to less

Since its introduction more than twenty years ago than I m depth (300 m horizontal distance).
[Hasselman et al. 1963], bispectral analysis has been Complete data processing details can be found
utilized by many investigators to study nonlinear in Elgar and Guza (1985b). Statistical stability of
phenomena. Hasselman et al. (1963) obtained good bispectral estimates was obtained by frequency merging
agreement between observations of bispectra of ocean over squares in (fl, f,)-space, where f is the
surface gravity waves in intermediate water depth frequency in Hz, and ensemble averaging over many
'11 m) arid predictions based on Stokes-like, non- records (each of 512 s length). The resulting number
resonant, nonlinear interactions. Nonlinearities in a of degrees of freedom ranged from 160 to 310 for the
wide range of other phenomena have been studied with data presented here.
bispectral techniques since Hasselman et al.'s (1963)
seminal paper. See Nikias and Raghuveer (1987) for a 3. OBSERVATIONS OF BISPECTRA
recent review. The present study returns to the
question of ocean gravity waves, but considers waves in This section describes the bispectra of shoaling
water depths between 9 m and I m. Waves in this waves observed in the field. The three data sets that
shoaling region are particularly well suited to will be discussed in detail have approximately the same
analysis with bispectral techniques for several total variance, but very different power spectra.
reasons, the most important being that bispectral First, interactions involving the swell ani wind wave
signal levels are relatively high. In addition, waves band (0.04 - f . 0.4 Hz) will be discussed, ano then
in the shoalinq reqion are of a short enough time scale interactions involvinq th infragravity wave, or low
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frequency band (f C.004 by) will be examined. The
ability of a nonlinear wave propagation model (Freilich oI lo
& Guza 1984) to predict accurately the observed
oispectral evolution is also briefly discussed. 101 xo'

3.1 Swell and wind wave frequencies (f >.04 Hz) x___________

The 2 Feb wave field is dominated by swell 0 1

(f -0.06 Hz) from a distant storm. The significant 9t- o- .

wave height (defined here as 4 times the sea surface )0' -)6*LC-6

xtarndard deviation) in 4 m depth is 65 cm, and there is_________
a very small peak at the first harmonic (f = 0.12 Hz, If0
Figure 1a) . As the waves shoal , the power in the first ri.
and higher harmonic (f =0.18, 0.24, 0.30 Hz) peaks
increases (Figure lb-if, upper panels). The growth of r -'

thee hrmoicsis not predicted by any linear theory,
but is well modelled by the nonlinear Boussinesq type
equa ti ons descri bed i n Fre il1ich and Guza ( 1984) . The -

bicoherence spectrum at the deepest sensor (Figure Ia) 1) D6-0. M (
indicates nonlinear coupling betveen modes within the
power spectral peak and modes at twice the peak's ' 02

frequency. For example, b(.06.96) .30, indictating a f~
sel f-sel f wave i nteraction at -0.06 Hz coupled : '-
to energy at f = 0.,12 Hz . ,s 'he waves shoal , the
excitation of phase coupled narinnics is reflected in f~''
the bicoherence, Figu're I. f' th FiueI,
the bichoherence indicates s r Ij than in deeper-
water) coupling within the p ea k t C6 , 06) = .49],
and alIso coupl ing be een the ,tk and i ts fi rst two o
ha rmon ics [b,'.06 .12) 28 36 .18 .14. In A )o6

shal lower water, nonlinear cru, ltig spreads not only to ox i is.,v xs xs o
encompass interactions between -he power spectral peak ixs)6oto 1is 18)Z iS '~ Q6 w I l 4 010" ri4

and its higher harmonics, but aso, to interactions 'i

oetween the harmonics thems,Ies Fr example, in 2 m
depth )tigure le) b(.06, .24 C; b,111) .3 .ot . Powejt 6pecvsa aznd conotouwt. (:6 bicchetisce 0-L
b .12, .18) .41; b(.18, .33. Although these 7 te7Feb data iat va'ttouw depth6 Te pcwev.t bpectt
bispectral calculations itr! iz, e oi y ha t nonlinear (baa indicate 95% con~idence eeLd a-Le o s emeo-&teja
coupling is occurring, arc rct the direction of energy above the cosm_-ezpcnd.ng bicchvtence pzct,5. The rVtnmiiw~
flow (i.e. which modes -,re rece'aing energy), the btcoh/e.Aence contcL Zevd iz b 0. 1 xx, th atddi-tnaf
sequence of energy spectra ir uE1show that energy con-tomAz eve-my 0. 05. Theme ame 310 degeea-a o6 6teedom
is being received by high 1r-eo..,ncies. (dofl and the 95% bin-iacaoce 62vc 6' L e,1

Alorng witn the increase in biconerence shown in bccohe~ence i.6 b =0.14. Vepth aiec oj;h 9. 0 mn, b( hi
Figure 1, there is substar-ts' oiphase evolution as the =6.4 m, c( h = 3.9, d) h n 2.7 m, 7 h = L0 m. 61 it
waves shoal [Figure 2).-h > - -1.ution of biphases for 1.3 m.
a few selected f'-equenc ,vr those pairs with the
hignest observed values-o ~l, , rernce, combinations of
the power spectral pea ond its harmonics) are Since the biphase depends on the ratio of
displayed it Figure 2. imaginary to real parts of the bispectrum, which are

teatures of the self sr..' interactior at the related to skewness and asymetry, respectively., it is
spectral ce;v i- '#'x C et at-a are ronsistent with not surprising that the biphase is related to the
Stokes-type ronli neari.ts. shown in Figure 2 in wave's shape (Masuda and Kuo 1981, Elgar and Guza

9 mdeph, ne wo wts ~r~r nteactons[-~~-) 1985b). Masuda and Kuo (1981) showed that a primary
21 . where 1.is be 't er-/ of the power and its first harmonic with 7ero biphase is

associated with a wave with shairp peaks and broad, flat
s pectral peak , have broheL -15 and two troughs, but with symmetry about a vertical axis, as in
-if the jther interactin ar iti 5 of the a Stokes wave. On the other hand, a biphase of ---/2 is
Stokes biphase I- = ''1"I ,- t he lowest order -associated with a wave pitched forward [skewed with

hseatrn ave s-ji gt.' on ''oherence and respect to a vertical axis, or vtrtiral asymmetry), but
substantiel biphadso S*r - - , ht- -9 data are symmetri calI with respect to a horizontal axis
i ntc rore d I's ' adI l - cr-tent w ith (zero skewness). The observed evolution of biphase is
itovoes-! xc onl iredrlite. = irilar conclusion, consistent with the visual observation that as waves
oaspd c-n an ana[ 1sis who h-n ' --d 'directional effects shoal they evolve from a nearlY sinusoidal shape in
4n 1. r deptn, was rt-h.od ny - -1,dr i j. (1963). deep water to a shape characterized by a steep forward

AS the wa ve S ia, i ~ )f hna rmo ni1c face and a relatively gently sloping rear face. I n
nteractons tendl tcwa d,, - ' ure 2). The very shallow water the data are suggestive of a

cccet rcv.1 ceorhn. pt ws that -an sawtooth shape. It is readily shown that the
f~~ece. not ,jO S t. Figure L) a re sawtooth biphase is r,(i ,j)

nori Ineat cied rd 'I,- D I -''- valu~es that In contrast to the 2 Kb mta, the 'S Feb data
'- ~ ry triads Figure 3) have quite broad band energy spectra. The

nave so a aues of Soiphase -5f1  Figure 2). As significant wave height it 4 depth for the 15 Feb
tne water depth decreases, the reirr o' ipproximrately data is 65 cm, the same as the 2 Kb data. The 15 Feb

-- hsan rtnase increases to ,-'is' ore and more energy spectra show very little ,uolution as the wave
cr.-'q-jtr-

1 
s)ajrS. The vail ,eof-1 io' ,,11 biphasps 'ield shoals (Figure 3, upper panells). The increase in

'teadilIj approaches - 2. high itequency energy (f G.- iby) at 4 m depth [Figure

'I,'
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3c) is an artifact of not cwrrecting the two deeper i0
measurements (Figures 3a, b) for depth attenuation. The 1.2 - i
bicoherences (Figure 3) also show little structural
evolution, although the average level of bicoherence I
does steadily increase from near zero in 9 m depth
(Figure 3a) to about b = 15 in 0.9 m depth (Figure 1.0 ,
3k. In contrast to the sharp peaks and steep valleys
of the bicoherence spectra for the narrow band 2 Feb - -

data (Figure 2), the 15 Feb data evolve from near zero
bcoherence values to low (but non-zero) values broadly

spread over most of the wind wave frequency band pairs0.
,Figure 3). E

Despite the radically different evolution of powerI
spectra and bicoherence for the 2eb (Figure 1) and 15
Feb (Figure 3) data sets, the eolution of biphase is -0.6
remarkably similar. The 15 Feb r data have no equivalert
of the Stokes-like interact!,!n within the narrow
spectral peak of th 2 Feb data r

, 
9 ,r deptr, but by0,

the shallower sensors no 'etu'-es distinguish the
ripnase spectra of the - r Da data ror, the

'rrow band da a ; r < th c as nd The
n-i iar Diphases are nc- rf r j cnsiderrg *hoat

'e" n'-j - of w O % -r , , water ,r- ,

,ual itat,. e I y s i m Ia r k I ,-r-a ;0")Ow 02 -. -
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very shallow water occurs a: depths where substantial
dissipation ( i.e. wave breakinq) beg ins to occur (depth1
=1.0 m and 1.5 m for 2I Feu and 15 Feb, respectively).-

The bispectral calculations for the narrow band 2
Feb data are consistent with the rionlinrear :ransfer of
energy from the power spectral peaK frequency to higher
frequenci es vi a (quadratic) quim interacticnis. On the
other hand, the 12 Feb data Figure 5, significant wave
height in 4 m depte, is 56 cm) have double peaked power
spectra with a narrow swell pecak located at f =0.07 Hz
and a broad sea peak above f D.'4 Hz, and suggest
that excitation of niodes througn difference interac-
tions can also be important. The bicoherence spectra Q
for 12 Feb (Figure 5) ar onsistent with non-
linear coupling within tne 1 ~wer frequency swell

pek[bL 7 .07) = .4 a' depth] transferring
energy through sum interactions to modes in the ~
spectral valley ( f -' 014 iz) .'mul tan.ously, there is
coupling between the low tr., - nc1 swell peak and the
high frequency sea peak [e.g , b, .05, .19) .13 at 2 mn _

depth], consistent with a 1,efererce interaction
between f =0.24 and f = OC1, Hz transferring energy
into the spectral salley at f =0.19 Hz. By 1.3 mi
depth ',Figure 5) the spectral valley and the high
frequency peak are almost tcual in energy, and the _________

sea-swell interactions are weaker than in deeper water
[o(.05, .19) =.64 at 1.3 m depth,,. The large increase
in energy in the spectral valley, and decrease .

in energy in the sea peak are not predicted by linear
theory (Elgar and Guza 1985a) . The biphase spectra
of the 12 Feb data (Figure 5) are quite
different than those of the 2 Feb (Figure 2) and 15 Feb -

(not shown) data. As shown in Figure 5, in the regions _________

of non-zero bicoherence there are three distinct
regimes of biphase. The frequency pairs within the
low frequency swell peak (f =.07 Hz) undergoing sum FicquAe 5. POWeA apeCtra, Lct ,6ia bicche~erce wch
interactions have biphases similar to the previouslye
described data sets, with, 'or example, s(.0 7 , .07) th e same 6ohtnia. aos Figutc il , d Lipha_6e6s the 12
evolving from near zero to :rcximately -1/2 as the Feb data aet. VCF 7 ,6C0, ood tie 95% bigz.jcance
waves progress from 9 m to *1ic,poth. Sum interactions tee 60t ze~c b-Lcohverence ~ b =0.15. B.iphasze vaiuesa
between sea and swell show simi lar biphases ( s; in d-e dis~p~aYed to the ~gh t skaokit bicohettcc
Figure 5). On tfhe cttier hand, as shown in Figure 5, ptot6. 81 inzdicates 6WCi-6.~ojx SuLm nt 6tos
the frequency pai .rs cor'rssponding to difference 6ea-aLweUf di66eAence titteO:.c t -ert, ' 3sweet-aea sum 4L -

-'actions between sea and swell peaks [(.05, .19), teatc" Depths~ dae a)l h 3.4 M, b) h 2.1
example: nave biprase ialues that evolve from ~ 14m )h ~ m

ccse to 180' in deeper wator to about 140' just prior
to breaking. The bi,'-ase wal~ts measured in 5 m depth
are consistent with the biphuvae of -- for a bound wave
produced by a Stokes-l ike d tf erencc interaction. The biphase of the wave triad with frequencies n
However, similar to the sum interactions, the biphase and ,n = 'n m i s 3(>.( , ) = -. M
evolves away from the Stokes value, - - n-in' mi

By the shallowest sensor (Figure 5) , in the zone In a field experiment with limited (16) degrees of
of wave creaking, the bjiohases of those frequency pairs freedom, Suhayda, (1972, 1974) did not observe signi-

orvcsy associated witn sea-swell difference ficant bicoherence values for very shallow water
..e~cI.n n ave changed substantially, and resemble interactions involving surf beat. There are two

lie 5na s e tne frequency pairs within the low primary differences between Suhayda's work and the
'requi-',~ ~ resn results which do show statistically significant

nonlinear coupling. First, there are an order of
.' -z~ magnitude morp degrees of freudom in the present work,

'hereby considerably reducing the bicconrerncesigni fi' o-'e levels 'e~cr n ~~l ip

'on i~nnn'e s the v-Parlf irn , the sumt boat sigr 1
nto r-uieward ind s Awa'rd nr-Dpagating j ,rponer~s

- r r ~ ' beaches s-,est that
is t, i g i e c r s ht re

3,u d 'a 19- 1,, d r Thorn n , 1,HS
-h-porr] . ehtn 1,rajed overi fnt

re at er 1 de ther~

i 1 rni' 1



3ispectral calculations were performed on records with
only incoming energy below f = 0.04 Hz, but no changes 1.2
above f 

= 
0.04 HZ. Comparisons of bicoherence for fre- +

quency pairs (f,, f ), where f, is a low frequency

.01, .02 Hz) mode and f is the frequency of the 1.0

power spectral peak, were made between records with and

without reflected surf beat energy. As expected,
removing the long wave reflections increased the
bicoherence levels of almost all the pertinent
frequency pairs (Elgar and Guza 1985b). Statistically E
significant nonlinear coupling occurs between Q 0.6
neighboring frequencies within tne power bispectral

peak, and their difference frequency.
According to Longuet-Higgins and Stewart (1962, VQ4 t ,

1964), the biohase of these surf beat tpe interactions.4

should be : = . At the deepest sensor locations where Ireflections could be removed, the observed biphase is j 'Y --

somewhat different than 180 . "t is important to note 0.2
that 2 = 180 is a deep water result, and the deepest
stations used here are in or1y 4 n depth. Similar .,

calculations for data obtained ir 18 m depth in a
different experiment produced o.=nases of about - = 0.0
1700 (for frequency pairs Comparaole to those discussed 2 4 6 8 10

here). in most of the cases inesi ,5 ated, the surf-beat
biphase evolves toward lower values as the wave field Depth (M)
shoals. This evolution of sune-beat biphase observed

in the field data is not precocated by the bound long F e7 Pd..Lr.ited ard .,(t... Coitd mr .
wave model of Longuet-Higgins ird Stewart (1962, 1964). Iept 6 ovhs.'ww the:2 i. .Ca. S'ekO t.SI'5..Z

BouLsineq mode61 pLdcts1vs . X hi12n dashd t ,i.i-

3.3 Nonlinear model predictions u bispectra a..se Boosinez q mode.Z ptded(r,., .t tmmir', .Ctc

dam' obsAved *omaue o6 icoaor~'s,'~
A nonlinear model (Freilich and Guza 1984) based Va1Lez o z ymmcVnLy.

on the Boussinesq equations f'r wavs traveling over a
shallow, sloping bottom (Peregrine 1967) has been shown
to predict accurately many aspects of the observed
evolution of shoaling waves Rreilich and Guza i984,
Elgar and Guza 1985a, Elgar and Guza 1986). Bispectral
analysis allows comparison cf model predictions and 6. CONCLUSIONS
data on a triad-by-triad basis. The nonlinear
ir-eractions between waves with frequencies The nonlinear evolution of shoaling ocean surface
corresponding to the power spetral peak and its first is particularly well suited for
harmonic for the case o narrow band swell are gravity waves is prialp ell saie or
accurately predicted by te ,odei , as shown in Figure bispectral analysis. The development of harmonics as a

7. Model predictions 4: the strength of the wave field with a narrow band energy spectrum shoals is

interaction (bicoherence, F;gu'-e 7&; and the resulting clearly due to quadratic interactiors between the power

change in wave shape !biphase, Figure 7b) are spectral peak and its harmonics. The same type of

ssentially identical to observed 4alues. Since these nonlinear interaction occurs among a wide range of

data are dominated by the narrow spectral peak, it is frequencies when the shoaling wave field has a broad
not surprising that the evolution of skewness and band power spectrum. Other similarities in the
asymmetry are also predicted accurately (Figure 8). nonlinear evolution of narrow band and broad band power
Moreover, the model has si"i!ar skill in predicting spectra are seen in the bispectrum. or example, the
bispectra, and correspondirgly the third moments, of a biphases of both types of data evolve from mostly
wide variety 3f wave fields narrow band, broad band, random values in 9 m water depths to a value which is
and 'rulti-peaked spectra constant over most frequency pairs in the wind wave

band (0.04 < f <.4 Hz), approaching . = --/2 as the
waves shoal. The biphase values are consisLent with

1.) Stokes-like nonlinearities (at least for narrow band-20; data) in 9 m depth. However, as the water depth
0 30; decreases, the waves evolve th-ouh slightly skewed,

-40 somewhat asymmetrical (with respect ti a vertical axis)

( 50 Ab shape, toward a highly asyPetrical urskewed,
' -60, .'I sawtooth-like shape.

701 ' Bicoherence and b'phase aIc lations provide
b -). 4 evidence for excitation of -u ,- mooes via difference

a-O interactions as well as sum irtractions for a data sot
with a double peaked power -e t rum. Low frequency

4 motions (surf beat) are 1d t high frequency

DFPTF- (EPTH energy located within the pot,- spectral peak. These
infragravity modes do n t - iaa to be uo'und with a
fixed phase rplationship *o L high frequency wave

t '_, groups since their tiphas- !,o, as toe wave field
.,' ,L'': ' n' - e.i -"shoals.

0 ,7 id .itc .i s ,',-.n. ,r , . ,, ,. The ronlinear shoalir; wa;k Tudel of PrEi lioh and

S, , .Ov . , ,' s , 4 Guza (1984) predicts acurte j *he observed bispectra

, rt 4 1t a bs t . of shoaling waves seaward -h= zone of wave breaking.
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A Triple Cross-Correlation Approach for Enhancing Noisy Signals
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Abstract correlation between the reference signal and the unknown

Noise cancelers are traditionally designed based on second- noise with the triple cross-correlation between the reference

order statistics of the available observaion. The design signal and the estimate of the noise. The impulse response of

assumes availability of a reference signal in the secondary this filter is obtained by solving a set of linear equations
input, which is highly correlated with the noise, while being involving third-order statistics of the observations. Designs

independent of the zero-mean information signal in the pri- using third-order statistics in other signal processing tasks.

mary input. In this paper triple correlation based cancelers are such as signal reconstruction and modeling are known to yield
derived for enhancing noisy signals. It is shown that cancelers high SNR estimates, 131, 14]. Higher-than-second-order statis-

based on second- and higher-order statistics are equivalent tics and their potential for speech processing applications are

when the additive noise and the reference signal are related by also discussed in 151 and 161.

a linear time-invariant transformation. The triple correlation In Sec'ion IIl, it is shown that if the noise and the refer-

based noise canceler outperforms the classical design when the ence signal are related by a linear time-invariant transforma-
reference signal is corrupted by additive Gaussian noise of tion then the cancelers based on the true, second- and higher-
unknown covariance. Simulations illustrate the performance order statistics are equivalent and cancel the noise exactly. In

of the proposed design, other cases the second-order canceler cancels the noise in the

mean-square sense. Although the higher-order can-eler can be

I. Introduction obtained by finding inflection points of a weighted mean-

Noise cancelers have been used in several applications, square function, it does not necessarily serve a minimization

11. In speech processing, the performance of linear prediction criterion. This is because, in cases other than the linear time-

(1LP) filters degrades in the presence of wide-band noise, [21, invariant transformation, the Hessian of the weighted mean-

making it necessary to process the corrupted signal by a noise square function cannot be shown to be positive-definite in gen-

canceler before applying the LP filtering. eral. The triple correlation-based canceler outperforms the

The noise canceler described in I11, uses a reference sig- second-order canceler when the reference signal is corrupted

nal in the secondary input to cancel the noise in the corrupted by zero-mean additive Gaussian noise of unknown covariance.

signal, which forms the primary input to the noise canceler. Simulation results illustrating the performance of the

The reference signal, assumed to be independent of the noise- second- and higher-order canceler implemented in batch form

free information signal and highly correlated with the noise, is are presented in Section IV. Noise cancelers can also be

processed by a filter, possibly adaptively, and then subtracted implemented adaptively, along the lines of 171.
from the primary input, as an estimate of the noise, to obtain

the enhanced signal (see Fig 1. in Section I). The filter II. Noise Canceler

impulse response is obtained by solving a set of linear equa- The primary input x (k) to the noise canceler (see Fig.l)

tions involving second-order statistics of the available data. is,

It is shown in Section III that the filter thus derived xW = s(k) + nk). (I

attempts at canceling the noise by essentially matching the

cross correlation betwe cen the reference signal and the where s (k) is the noise-free informantion signal and ? (k is the

unknow'n noise and that between the reference signal and the additive noise component. The signal w(k . derived for exam-
estimate of the noise. As an estension of this property a fier ple from x(k) in the absence of the signal (silent periods in

is dcrised in Section III that matches the triple cross- speech) forms the secondary input to the noise canceler. The



reference signal w(k) is processed by a filter with impulse and w(k) and r,,(l)=_E{w(k)w(k+1)} is the autocorrelation of
response h(k) producing an output i(k) which is subtracted w (k)

from t (k ) to give e (k) The utcat of the noise canceler e (k) Taking Z-transforms on both sides of (4) we obtain the

transfer function H (z) of the filter h (k) as,

2)If (Z) = Sx(z - ) / S,(z -1 ,(5)

The Noise Canceler where H(z)-Z(h (k)}, S.(z)=Zfrx (k)} and
e ,.n k") s (k [n (ki-nc(ki] S..(z)_Z (r..(k)).

II. Triple correlation-based noise canceler

Substituting for n(k) in the cross-correlation

r (I)=-E { i(O (k +1)} we obtain,

S cc en, a

Fig. 
t

It then follows from (4) and (6a) that
The noise in the output of the canceler is [n(k)-n(k)]. rA,(k) = r.(k) = r,.(k), (6b)

Thereforc, it n(k is appropriately produced to cancel n(k) in w
some sense, then there will be reduction in the effect of the where the right-most equality follows by noting that s (k),
noise on the information signal in e(k). Hence, the design of present in x(k). and w(k) are independent and zero-mean [ef.
the noise canceler consists of finding h(k) that processes the (ASI) and (AS2)I. Thus the filter h(i) obtained from (4)

reference signal w(k) and produces an output n(k) that attempts at canceling the noise by essentially matching r,,(k)

matches the noise v (k as closely as possible. and r (k) [cf. (6b)1.

In (1] Widrow et al., design the filter h (k) to minimize If n(k) and w(k) are related by a linear-time-invariant

E{ In k-n k) 2 ) resulting in the mean-square-sense cancella- (LTI) transfomation, i.e.,
tion of the noise. The same effect can be obtained, under cer- n (k) = YXh (i)w (k-i), (7a)
tam assumptions by designing h(k) to minimize Ee 2(k)). i

These aIssumptions are: then multiplying both sides of (7a) by w(k+l) and taking

(AS I ) All signals are zero mean and stationary. expectations we obtain,

(AS2) The information signal s(k) is independent of both rn(k)=r,,(k)=XhI(i)r,,(k+l). (7b)
n (k) and w(k). i

(AS3) n(k) and w (k) are highly correlated with each We recognize from (7b) and (4) that under (7a) the
other, designed h (i) would exactly be equivalent to hI(i) leading to

The equivalence of the two design approaches can be complete cancellation of n (k) by n(k).

shown to be true under the given circumstances by first consid- As a first step towards extension of property (6b) to
ering the minimization of the objective function, higher-than-second-order statistics of the available data, while

.I = Ee2 (k). (3a) preserving equivalence of h (i) and h 1 (i), under (7a), we inves-
tigate into the usage of triple cross-correlations. The triple

with respect to h (k) and then using (AS I)-(AS3) to simplify correlation-based counterpart, h(k) of h(k) is designed to
and show that this is equivalent to the minimization of match the triple cross-correlation r.(m,l)
E [nk) i-n (k 2 }, with respect to h(k), Il. E(n(k)w(k+m)w(k+l)}, with the triple cross-correlation

Substituting (2) into (3a) and expressing t(k) in tenns of r-,,(ni) -E(n(k)w(k+m)w (k+l)}.
t (k andh (k) swe obtain, Analogous to the design of h(i), the triple cross-

correlation based noise canceler is designed by solving the fol-

,/1 F [ix (k )--Yt (i)x(k-i;2 }. (3b) lowing set of linear equations for h(k),

By miniiing (3b with respect to t (k) we obtain the follow- rh(i)rnjnm+i,!+i) = r nl(m.). (8a)

irn: set of linear equations
Notice that h(i) can be obtained from (8a) i- more than

one ways by choosing different sets of values for {nm. ). Also

,a here r,, -t((k)w (k +l)} is the cross -cotelaion of .t (k h(i) may be estimated adaptively along the lines of [7].

'A h re r, t(k )~k 1) i th cros-c rreltio of (k

z 13 I I



Substituting for n(k) in r;_(mn,l) we obtain, replaced by r and r ... (m,l) to obtain the fourth-

r.'.. (ml) = Yh(i)rw ,(rn+i,I+i) = ,,,,(m,1), (8b) order correlation canceler. But the higher-than-third-order
correlation based designs are not insensitive to additive zero-

showing that if h(i) is designed using (8a) then it indeed mean colored Gaussian noise, since fourth- .rd higher-order

matches, r,,,(k) and r;_(k) exactly. correlations, unlike third-order correlations, are not equal to
the corresponding cumulants and hence are sensitive to Gaus-Taking Z -transforms on both sides of (8a) we have,
sian noise.

H :z1z2) =S.,(Z1 Z2) S..w(ZI t  ), (9) Due to availability of finite length data in practice the
where H(z)_- Z{,,, -.. ) = 7tr,-, .) and ensemble averages. n:id,, (8a) are replaced by sa.nple aver-

S..(z 1,z2) =Z(r,_.(m.l)[. ages to yield,

Multip;ing (7a) on both sides by w(k+rn) and w(k+l) q IV
...... :'" h (i)- Y_ vvw(k)w .(k +m+i )w (k +l+i )

we obtain i=O N k=O

rn..(ml) = r,.,(r-J1) = yh (i)r_,.(m+i,i+i). (10a) 1 w,+i= Y~x (k)w(k+m)wv(k+l), (12)
k =0

From (8a) and (10a) we observe that, under (7a), the designed where h(i) is the order q FIR estimate of h(i), and N is the
h(i) will be exactly same as hII) leading to a complete can-

cellation of n (k) by (k). Further, it can be shown that under length of the available data.
(7a), ItII(--) - Z hj(k) } can be obtained from () in more As an alternative to the linear equation based solution of
than one ways e.g., (8a) the triple correlation canceler can be designed in the fre-

quency domain using (9). After discretizing the frequency
I (-) =H(z z2A 1z.zzl. (10b) range [0,2it), the DFT counterpart of (9), in practice becomes,

It can be shown that any inflection point IOJJah(l)=O] of H(k+l) =S.,(-k,-1)/S.(-k, -1), (13)
the objective function,2. 'th ojctvef ncio ,where ii(k+l) is the estimate of H(zlZ 1 z.=ej k '.e-l

J, = E~e2(k)w(k+m)} = E([Yfh(i)w(k-i) 2w(k+m)},(11) f 1  .2

N-I N 21 I-k r
Y_ _.~iw~-m)w(i-r)}e N'  e 'satisfies (8,). This inflection point cannot in general be shown S - ).- ,w

to be a minimum of Jo, and hence does not necessarily serve a and
minimization criterion. Perhaps, Jj ,-o becomes meaningful
as a weighted-mean-square function when w (k)>O V k. SN- N.-r wr

-/)=w { w(i)w (i -m)w (i -r))}e' V e 'N

Remarks: Nr kr(N-I) ,=0

(i) Filters I (k) and h(k) are in general non-causal but exponen- Although the frequency-domain based design is faster, when
tially stable and hence can be truncated. implemented using FF-Fs, the time-domain solution appears
(ii) Both the second- and third-order canceler yield the same more reliable since periodogram type estimates of,
H (z), when true statistics are available. The difference is that Sw(-k, -1) and S..(-k, -1) exhibit variance which can be
the third-order canceler contains redundancy in its estimation reduced using windowing.
[see (8a) and (10b)I.
(iii) The second-order noise canceler is built to minimize the IV. Simulations
noise power in the output, and hence to maximize the output

SNR, unlike its third-order counterpart. The information signal s(k) was generated as an AR(I)
(iv) The third-order noise canceler is insensitive to corruption process. The reference signal w(k) was generated as a zero-
of w(k) by addlitive zero-meat Gaussij nloise of unknown mean. ii.d., exponentially distributed noise with y3,=2. The
covariance, while its second-order counterpart is not. This fol- noise n(k) was generated by passing w(k) through an AR(2)
lows from the fact that r.,.(m.1) in (9a) being a triple correla- filter h I(k), with poles at 0.35±jO.45. The primary input x (k)
tion is insensitive to signal-independent, additive Gaussian was obtained by adding s(k) and n(k). Two test cases were
noise. [81, while the autocorrelation r,.w(1) in (4) is affected by examined, each at input SNR=I0db (see Figs. 2a,3a and Tables
the prcsence of colored Gaussian noise. In both the cases, 1,3a), and 0db (see Figs. 2b, 3b and Tables 2,3b). The inrut
r, .n,ll and r,..(k) are unaffected by the presence of the SNR was defined as Ejs2(k)) / E(n 2(k)[.
(iaus,,ian noise ,ince it is zero-mean and independent of x(k) In test case #1, Figs. 2a,2b depict the true and estimated
and wt(k impulse responses obtained after approximating t I(k) by an
(v) The re',ults of this section extend to higher-order statistics FIR filter of order 5 and solving eqs. (4) [2nd-order approach]
of the observations e.g., r1,,,.(mI) and r,,(m.l) may be and (8a) (3rd-order approach]. Tables I and 2 show means and
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standard deviations of the first five impulse response (IR) coef- [71 A. Swami, and J.M. Mendel, "Adaptive cumulant based esti-

ficients averaged over 50 Monte-Carlo runs. Although the mation of ARMA parameters," Proc. Amer. Control Conf., pp.

mean of the estimated coefficients is almost the same for both 2096-2101, Atlanta, GA, June 1988.

cancelers, the parameter variance of the 3rd-order canceler is 181 D.R. Brillinger and M. Rosenblatt, "Computation and interpre-

slightly higher than that of its 2nd-order counterpart. As tation of kth-order spectra," in Spectral Analysis of Time

expected, the (average) output SNR of the 2nd-order canceler Series, pp. 189-232, B. Harris, Ed., New York, Wiley, 1967.

is (by design) higher than that of the 3rd-order canceler (see [91 G. B. Giannakis, "New results on multiple correlations," Proc.

last two rows of Tables 1 and 2). The output SNR was defined 22nd Asilomar Conf. on Signals, Systems, and Computers, pp.

as E {s 2(k)} / E{ [e (k)-s (k)] 2 }. xx-xx, Pacific Grove, CA, November 1988.

In test case #2, w(k) was corrupted by zero-mean Gaus-

sian noise of the same variance as w(k) while being indepen-

dent of x (k) and w (k). Corresponding quantities to test case

#1, appear in Figs. 3a,3b and Tables 3a,3b. At least in this case Fipm 2

the 3rd-order noise canceler outperformed the classical

approach both in terms of the IR coefficient estimates as well

as the (average) output SNR. I -
0 ~- SNR=1(db

V. Conclusions and Discussions

The second- and third-order noise cancelers are -

equivalent when the noise is linearly related to the reference 04-

signal. The third-order noise canceler outperforms the classi-

cal design when the reference signal is corrupted by zero-mean

ce!ored Gaussian noise of unknown covariance. 0!k

The noise canceler discussed in this paper attempts at

approximating the relationship between the noise and the refer- 1 1.5 2.5 3 35 4 45. 5

ence signal by an LTI filter. Currently under investigation are U_

nonlinear cancelers, whose parameters can be estimated using

higher-order statistics. Such nonlinear filters have been con- Table I

sidered in [91, and have been shown to yield smaller mean-

sq-are-error than the linear filter approximation case. ru N0(5 R d
IR h1 (0) h 1(l) h1 (2) h1 (3) h 1(4)

True 1.000 0.700 0.165 -0.112 -0.132
values

Proposed 1.050 0.685 0.170 -0.087 --0.116
REFERENCES method ±0.110 ±0.111 -±0.110 ±0.099 ±0.095

[1 B. Widrow et al. "Adaptive noise canceling : principles and Classical 1.027 0.663 0.172 -0.087 -0.144
applications." Pro(. of IEFE, pp. 1695-1716, 1975. method ±0.083 ±0.098 ±0.098 ±0.074 ±0.083

[21 M. R. Sambur and N. S. Jayant, "LPC analysis/synthesis from Classical 30 db
speech inputs containing quantizing noise or additive white Output

noise," IEEE trans on ASSP , pp. 419-423, 1978. SNR Proposed 28 db

[31 G. B. Giannakis. "Signal reconstruction from multiple correla-
tions: Frequency and time-domain approaches," Journal of the

Opnial Society of America, May, 1989.

[41 C. L. Nikias and M. R. Raghiveer, "Bispectrum estimation : A
digital signal processing framework," Proc. of IEEE . pp.
869-891, 1987.

151 B. Wells. "Voiccd/unvoiced decision based on the Bispec-
trum, r. of Intl. -onf. on Acoust Speech and Signal Proc.,
I(ASSP-85 . pp. 1589-1592, March 1985.

[61 S. Scctharaman and M. E. Jemigan. "Speech signal reconstruc-

tion based on higher-order spectra," Proc. of Intl. Conf. on
Aout Spec h and Signal Proc., ICASSP-88 , pp. 703-706,
April 1988,
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Table 3a
Fqg,-r 21,

50 runs, N=2048 (8256), SNR=I0db, Colored AGN

IR h1 (0) 1 hI(1) h 1(2) h 1(3) h1(4)
" . 3rd-ord=

SNR=O~db t True-012 0.31.000 0.700 0.165 -0.112 -0.132-- , .values

0,, Proposed 1.036 0.705 0.176 -0.148 -0.097

method +0.134 ±0.111 ±0.144 ±0.123 ±0.106

Classical 0.606 0.448 -0.075 -0.239 -0.224

method +0,061 ±0.066 ±0.072 ±0.064 ±0.060

Classical 15 db
-Output

SNR Proposed 25 db
' ,5 5 3 35 4 4_5 5

'Fable 2
F~g-rc 3b

50 runs, N=2048 (8x256), SNR=Odb

IR hi(0) hI(l) h1(2) hj(3) hj(4) 3-d'°rd=+

-True 1.000 0.700 0.165 -0.112 -0.132 " -,,

values 0.6"

Proposed 1.027 0.703 0.172 -0.102 -0.123 4

method ±.036 ±0.037 ±0.035 ±0.032 ±0.033 0.4-

Classical 1.009 0.688 0.167 -0.104 -0.137 0-1

method ±0.027 ±0.033 ±0.033 1+0.024 ±0.027

Output Classical 24 db

S Proposed 23 db
1 1.5 2 2.5 3 35 4 45 5

Table 3b
Figure Ia

50 runs, N=2048 (8x256), SNR=Odb, Colored AGN
: L 2Znd.ord=" *

3rd-ord=. IR h1(0) hi(l) h1(2) h1(3) hj(4)

SNR=Odb ] True 1.000 0.700 0.165 -0.112 -0.132

1 values

Proposed 1.023 0.705 0.171 -0.119 -0.114

>4- 1 method ±0.054 ±0.057 +0.055 ±0.053 ±0.044

Classical 0.605 0.445 -0.064 -0.237 -0.231

method ±0.023 ±0.025 ±0.025 ±0.026 ±0.023

Output Classical 7 db" : Output

SNR Proposed 20 db

7 35 4 45 5
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TWO ADVANCED IMAGE PROCESSINGS IN POLYSPECTRAL PASSIVE ACOUSTICAL

IMAGING SYSTEM FOR NOISY MECHANICAL SYSTEM DIAGNOSIS

Kimio Sasaki

University of Tsukuba, Institute of Engineering Mechanics

Tsukuba, Ibaraki, Japan

ABSTRACT

i-wo 1,. !i ed i ' proccssings in cSPAi (- ,C'it Lit',t 1 ;a,,i, ,) n eki, a,-f p -:p,,n-d t-

sake teu i:',te detale.d estlimttion of noise source distribtutions possible. One is the highly stable
anuierr.-1: Irfin imag ing by using tile hemispherical detection and the least squared extrapolation oa

I r; detected ill a limited spatial frequency, with the aid of the a priori knowLedAe about the source
:, d the other is the straigh t trword im-ging of spatial distribution of the dependency among

* c on. -cv c ::z,,n nets tlrough multiplication of primary images reconstructed by 2nd and n-th order spectralI
;i.'J .1 iPriiVciples of the proposed processings and the effectiveness as the more detailed information

r ,neans for passively estimating the function of acoustic or vibration noise sources are shown,
i tt;ntu 1 results of experiments, including mimerical ones.

INTRODUCTION

Sereti it-ive acoustical imaging systems I 1-13l have been developed as a promissing means not on]v
r extr.ictin4 th precise information about radiation noise sources, but also of exploiting the sounded

o ,nes:, t Tr -enisi systems and/or diagnosing the system mRalfunct ions, because of tile special features
thar thy, ire able t, visualizing the various radiation states of acoustic or vibration sources

wltnut any affection on their stationary working conditions. Each of them uses the power spectra of the
dit,,cted .- ignlls for imaging, so that it may visua lire sufficient information about the object only when

cti -ignails are GaussianD. However, for non-(atlssian signaIs such as the noises from
c i -;'stem ,,them imaging methods were required.

Tl tis nd, w, prop sed a PSPAI (polyspectral passive acoust ica i imaging) system [41-[61, by developin;g
nhe cutio iaoythetic aperture method of imagery,, in a unified manner so as to image not only the

rdi iti,; tiplitude distribution of individual frequeitcy components but also of the degree of dependency
then, anid male clear through tundamenta 1 ic r iments tht it has the tollowing main spectia

-ii ) 1 L in uc appl ted to any acoustic sources which radiate stationary random signal, and

i I'2 - it,! 'ize tile various radiation structures of the source biyp v choosing tile order of spectral
a i,-!7 1 t tile stage of extracting image information, i. e., hologram signal . Moreover,

I- i t ima , bv tie higher order spectral analysis is not ituected from any Gaussian noises
th c ti al lv, aS we I I as

1-. ) 1 -:1 idered to be teiul tfor detection of tie subtle abnormal ity of tie mechanical system.

kp; r t r,ti, h uper ior characters, tile )SIA I sVstrem uses tile ho lographic scheme of image

i,,n, - i , azimuth resolution is limited at most to a half of the wavelength used for imaging
. h . a bi druwback for actuI use, especially it an area oi long wavelength. For this purpose,

, d sUperre-S lUtiiin imaging [8i, 9] were proposed, but a contradictory relation between the
,t tci re-olut on and the enhtncement of SNR is resulted, in every method.

]j ;I C i, ,rt ,:lu, w lit pr '- two method,, f- image processing that con be carried out straihtforwardly
... , . pru -ii in l, cimputer-aidled USuAl system. fhat is, (I) a superresolution imaging with the

, - dir dii. i , expected S1 of reconstructed intaiges by thc- hemispherical detection and tile
- '-.- ' trt:i-I itt-,,n ,It hologram io I imited spatial frequcn , With ti il tid f i priori intormati-n

tc U 1-1 itV i, Z t l( 1, ttnd fill tt I n t pipCli Cutive p ro.essit g oit several pri mary images.
t "" it ,i d i c v i l d ri r1u-;t , n v cin'tt 'ts ;is wt-II a- thru t ie leputticitcv among Clet, ti maike'

:: ,' , l ',,d . ,t n.,tip ,t t e. t ltu!, It; the' oh ieCt <L ur.e p ? 'i !

j,+ i.'I I I r : r710, 1 ,t tdp, i t I f t t' u L ti i/.. tt i on o the whoII t spai I ti I
,: : ;,"p -,11 L~,r':t, , p, ; i ;Ic r tiqd -,, ;i .;ll II, :l , iated w itLh file !galilee .

':t r 1 1, :' r ,V i,^ ,1; Lhc I' t" i L'.- et m, the jtrinl 1i l t 't tile' prOpt, c p-cs ; n < a d th1
,':, ; ., , :; h . ,,r,, dtt i l d ~ l r:;,t , ; x)tr i, t i m; n c l - 1' r p,:s i e v e t pn i tile lunltionl ,I

: I I~ t,, It: ;t" t it,- ,iS "r'1 I c 1 i t It i !-, 7rc ShOw11 Wi7t 11 llllmriCiI .il;



PR INC IPLE

A) Brief Review of the PSPAL System

c undamenta I construct ioul of thle system is shown schematically in Fig.- I . Random waves radiated from an

object ire detected by% a rotalting array ot microphones in thle hemispherical plane. 1he detected signals

ire subjected to auto- and cross-polvepectral analyses, so that thle hologram signal at the desired

requifeY'- is (der ived . Reconistr ucted images are displayed aft er a certain process of image

reconstructions, -soch as thre holographic, algebraic, and LMS(least mean squared) methods, and so on.

Preedngclet us state the main assumptions reurdfrtefllowing mathematical developments:

(Al) Position and Area X. of object distribution are known, and its finite size is negligibly

small, ompared to the radius D of detection plane.

(.A2) Sound waves propagate spherically through the homogeneous and uniform medium.

!-,t thle complex amplituide of object emitting wave field of frequency f at an object point x be a(x,f),

the>n the object radiation signal is generally expressed as follows 15J:

where dz f) denoite-; a random function, representing the temporal random nature of thre signal. From the

aIssumptions (Al) (Alj), the detected signal u(E,t) at a point E=(D,rt,b' ) can be written as in Eq. (2), by

Usi;ng th)c Conplexm Iiti..-r thle Wave field to be detected at the point E, defined by Eq. (3).

where d~x,E); diLitance between points x and E, and k="2,f/c; wave number 1c; wave velocitv).

- - -A Pnar Information

About the Object

.!C-C Mcn Position
"c>'~ncn ii istribution

AreaImg

at -ro Image

tmit~n Poer pecralAnayse rB Holographic and

~i.- b rgidig h detecte signals u 1 (t)at alyspaial fieAony(,OC n 0 t

p~z4- rapcta Anls5 analr Vs, ofu1(,) n u(h t)asfllw

'nec te sam kind f holgram sgna I as inthe cnventongal Etaostica oorpynr band

nose ~ ~ ~ ~ ~ ~ ~ ~ ~ fg In Fuob strcei tcsm anraie.ta b calculaction of the wave bac-popaaton

hoeer hys uial meg ofteted rsgnltan imaes~t e quil dfferet font caeof n2 and n 3. ithe

img fornnng rpresnts&a the raiteinpu distruton of indiidal spaetraromonntswhiemt resuvlt,

or ii-at i thea~er thrFtogh thts, etdhr e of u depedc amloga sinlant alb ervdfo h r

'p requ anly1 trw ents . ,s the result,) the latters thIrl Dtctn

(pca le me kin (F holgra snal as etoe pe iuly th Hovrto cutia oorpyaemoie ,

;72v- r ie is'; ump ieons(Al)ucte istane sapr ma matr ion. bs Detecinofte aebak g ting

-,nwn ir ri-q repes)t pemits tio istoribrutra o ndiiuatorm)lcmonnswil h resunt

I or i ' i., i len by I-Sq. (hrug th dege oig dee) ec amo] i

I' r; llr-'i .. is ' n ethe sot a resultn,: te lter of s tea ile Dtctn
spc i Sife te iiSl :1 F ) , s meitine /' an "s y. Heiphr

I I .~k b ieiumpt li AI ee t il~e d o is -ms ap oii ane ion asDtetn
tln -,Ie ~ . (3)l s-i tli t ti iili .iiid rn-e rs it ~i a Obec Plnr()Dttn Pan

-ipr, li ri t' be it ril /vF . an (,,e ei 6ieIfrm te Fg eoer fhlg eeto

(I XF.) 1) +x1) ',' i 1 co, f I n n:.+ z(,o 1



t1,. .r Iij, is one of the speciAl features resul Cd i rom the use of heiisperical detection.

B) Principles of the Proposed image Processings

1) Principle of the Stoperresolution imagj.ng: For brev ity, consider a planar source, the known

distributi., I iw. Xi : which is limited within [-X ,, lxi-Y,,Y0 I,in the tollowings. In this case, the

- p' 2:0 theo,ry .iss, Cuile next interpolation formula,
-1-; I iUk I,1 ), (7) =1! o I '

,!;Wi, = inc(sit lko s: /t
1 -i)sinc(sinlksinrl. -.,-); sine(x) = sin'x/"x,

wheFe l'vi. ,,j Is are the samplkd vles to be est imated and Ht( k -)s tire the detected hologram signa. q.

i hus , - i, u the object Sptiat i I frequency distribution A(a,. ) is negli gible for PW - m,,, and I- , n. , ,

te i'ti e uu: a - tion, in Eq. IT) is replaced by the finite one of L-=(2.+l)(2n+l), so L dimensional

spa1 tiai ,cl tcy :e,-tor A, consistin of A(i, , j  )s, is estimated from the detected hologram vector 0,

t( qk' s with K elements, for \ e.tpe by the 1>1S method as follows:

A = (S S -StH - RH, (S) S; KxL maltrix of s(k,l;i,j)s, reorderod to match with A and H.

ItN res lution of iLe system is given by lx2X i(2m+l) and 2y=2Y /2n+l) in x- and -directins
re pecrci' lv. Mort o ver, when n, noise xists, the eact spatial frequency contents and hence the very
radiation, field of the soure cin h reconstructed completely, at least in a mthematical sene, so tar a:s
0":. - 'U:r : i&1. in: han:d ! Emit!rc and :"u::bsr of ho.lo:gramn dwtnnin A  poi nts is 4rI-atZ r Klim :lot ,f .,n! K

tIe itt,, s tt , q to he t i ard, i . , K L. In actiual circuns tancee, howi ve r, rhe to I r am
::r. pl M , err,.r, induced trtm detection noises or spectral estimation and processing errors, I ::it--

th c .vij'. , r v o- f ,, .lc ,ut[cii enianc em nt, that is, the concrete application of the proposed method.
1h, ilr,- mjt sqiird) snsitivit E ,f the method to the additive noises is easily evaluait ,

ittr variance analv sis, of detected hologram, as fol lows:

i, R i-, (9) ,R Frobtniu norm ol reconstruction matrix R.

Fr.7 rjeVal's theoirem, the RYS setnsitivity f the hologram detection is that oi reconstructed imraae,
t-, , - tl t Fhe rc.ut in Eq. (9) provides quit -- tmportant inform.alti- . abtut the use of the proposui

-tprre ,oliution iWa4inc, with tie most suppressed sNR degradation.

2) Principle of Mult iplicative Image_ Processing_ As is stated previously, the P'hAY system provides the
i-i1e ot .orce rFdation Oi-n;tribtion related to a specific frequency component seprateiy, even when

Iihcer order spectral nlvsiq is> used, and each image thus reconstructed may physica11y represent such a
-rin il ditributio through ependency among rrequiency components, that depends on those of the other
rel ited frequencies, ihuq, i we multiply the marminal distributiKon with those of the related individual
tre-llueneIc5, tile w i ' p itial ditrihnti on, tanng ito at, ccount the temporal dependency, must he
rFeswlted, Frh kind ,: ditrec t im iny of the dependencv among :requency components may serve d more

A- ,-- .- . - .

i N--,-.

-.. /.# -

7/

Fig . 1 Numerical example-, of point spread Fig. 4 Reconstructed image; of a Gaussian
tonil r ion of the ';ystem noise source with 4 peaks



NUMERICAL. AND EXPERIMENTAL RE SU LTS

A) Results for the Superresolution Imaging_
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B) Results for the Multipicative Image Processig

Yo oximino the iundamciitcl chiaracteis of rho prilp,-o: malt iplicaitive processing, imaging of acouistic

jo-,tilt; from a widely ised swooping iracliinof axial flow type w.as carried cot.

Firtly terporal clairletorit les of the machine oemittinag noises were analyzed from viewpoint of the

powr secra and h ispoc tial character isties. Fi g. 7>hows theso ampl itude characteristics of the noise

Ntct i rnof the inlet side of rho machine wilon it is sl ightly loaded, In the power spectrum iNOl

'n tlhe Iilur hla) i, several sharp peaks are seen over a lol varying back ground hill. Their central
I roqa~pceL a re dis<tiibated altrostr at multip los of about 43 AUQlz) , and well correspond to the harmonics of

bade pasi- ng f requency deterimi ned by the macilno t ruectare and its operating cond
1
it ions, such as

nw- b hi - t o5~, a rotor, inlet and out lot strueturo of air flow and revolut ion rote of the rotor.
o -'p01'ndingk ax few peaks of h igh Omll~ i tude re also)

osorved. in the b' spectral and bicoherence chiaracterist ics- in
tile f igur tOabi an 6 (c), palrticu~larly at the neighborl 'd of

W!d il:. il iiz). (29 Hz1, 3-07/ Hlz and (215 H~z, 215 H'l in

tile I 1  p 1aT ISO lie, c specrat eciaracteristics meanu the I___ ___ _____

A s depeindec - amlong4 tile hariiln ica I y relaed spmq tial i

copoenlts, ad miltches wel I withl the machine ni~se _________

A1 reaids proposed i n Rei f. U 1
W c rore closely the radiationa status of the swoopic"g W

machlilae nos tofw e-xpoerimeln ts o1 trage reconstruc io' werte oerle u

ill -dcc by us5iig the pr-poed method of muitipil~itive ,a

prcsng as well as the conventional one. Topical e-x-le

t h ~ oast ried images are sihown in figures 8 ad 9,
wnir A roken line i-rpresents on outer foarm 01 tlhe =in ac________________

abet - ide, for reference. F-romi these figures, the Isil loing
iItre> a5iOit tho radiat ion field of tbe noiso are eloirlv

1 Al to 'ah the reconstructed i: rages of individual

frequencie ls exhibit a fair lv different aspect, ech-i of_______
-hem takes tHe miaximium value near tHe inet, but

ditribute widely oven outside of tile machine (so, Vie

U) tireetton of the reconstructed inge s by hispic t til

alvsis, showii in the cioli (b) ofitese figu,,~ are

invrted gltobally I, eompa rod to those by the power
spectral analy-sis, shown i til fir columln (a).-
!hts direct ion-inverted nauei interpreted as tao--'v -

result of intoerferi-nce with thno shadowed phoase_

'n] lee'lv' of leg-It -v f ruqe leac
I -i-cover, ini the image o-i I iurc 9Mb), a cotasider

fiae struturei- is- observed, reutn in the e!~

ofthe rore sti-ag interl er-'-e between thewaeilq
If froquences- 6.()3-. li, and -3.0U7 (ki-z) .

1) WK l i> nterfre-nce pheomo.'on stated above appear-
-trangly in tile i-c 'nstill ted image by the prop':

7tipl leatf li-c li-or lcin tile fl-gui-e 94c). -hl Fig. 7 Measured 2nd and 3rd order spectral

r-Uilt i-n 8iei doea not h w this effect, but '-i'- characteristica of an axial flow

il" i-, -re sit'IV tliite g in the figure - itype sweeping machine noiae under

the r,-lll u1 it u'mlie sid i-rom these bseurvatli-- ti it slightly loaded condition

I <1) fi [- ( i l I t ,ill r -'T 1 ii li p R at 111 J1 'I 1i I' )l 1 T c I llr t d)1 t mr- o1 il li ', Ii

W,, i II' .1 ; I ii ... ... i 41, ' r - ro 'ia i i ''r l y I I ' 1. 01 / I khh,)-



- l2 ad " at i I! 1'>t Ii itati i ,, !~ t-, tq ll it ci 1.17 (QkIzn ) 11 iiii i(5A ( kI iz) ; I re s tr it gi I ) ctlit'ti

''-'Lt Dl'ji'e t ral 11,11'tt Ii IC A arc 1,: Cc1t0 lClt1 Dt' ill I e~ltllre> can! 11it bec obtalined

71:~~~1 1 til Lr og! lit -i--i %II tT Iit iIt,'t l4 .t 2 'it it '1 t, we Ill ril(,lt ion rt ilt'vd

25-25 2 5i~-

I. 1 Bsptlai.t ( tt-,Iys

A-1,,sl, It1 6.03 kHz, f2=-3-017 kill.)

Fig. 9 Experimental results tar multiplicative image processing of reconstructed images of
the sweeping machine noise, where reconstruction Frequency f, is 6.034 (kHz).

CONCLUSIONS
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STATIs'rics oF FICO!IERENCE AND BIIIASE

Chria Sehert anid Sto'we Igar

Ilecirial aird Cormputer IrAigirrerring I~epartiienIt
WVashingtoni State 1 riiversit v

P'ullrmanr, \\asirgtori 99[6 1-2752

A BS~; I R\AU'I 1(,e) is tire comrplex Fourier ceilivert of the( tunefi series
at. rad~iari frt'ciericv w airnd 1,'[ Iis lie expiected, or aver-

ti r tFit iiat,' of lxii hirenice and hipliase were age, value. Vor a finite-length trime series, even a t riil v ]in-

hifaiiied fr''ni numinerical siiulioiis of nionilinear rarndorr car (e,.g- (Gaussiarn) pirocess5 will liave rioriero liiilieritiie.

liariji iti) proc'esses withI kriowni tmre hicecree arid] lhi- lilirieli (1965) shows that. fir a Cair:siari process, tle i

pie.Ixpesm Fr t ie bxias, variance, arid problalxility cohierencee (whose true valule equals Ze'ro) is approxitliately'

(lstIitI s'Fesitije f iclerrteardbipliase as fi'mic .- ('Ii square (') djistrihuIted inl the !ruit of large degrees oIf

F-i 'rie( triou o-e erte and rrihmer of degrees (of free- Freedoin (dif). arid, thus, significance levels for zero hicilier-

d'iii (ii' F) uised ill thle estirraties are lireserited. Ilie pdfs are (,rice as a func~ti (f (lofrati he calciulated. IIgar and( G;117a

"itsisil iiwth iiiho e i ial dlist riiuii uis dlerivedl for the lirrit (1988) demiornstrated( that. estiriates of hicohiererice froml a

F rirfiiii' d' 'Faridi are used to rIiriSTet cornfiderice limits ott (itisslili p~rocess are alsui approxitrately *Avx distributed for
e1st (oat's F hir' huereiuee arid iipliase. Nlaxirtitn likvlhiod I' vlesmdf io.3)ai are not senlsitiveo sriioolliiiig

,r uio t rue v ii'of ielrrieand( hiphiase givenl lirwedir('s iuseil to increase df.

hIsi'rvil vallies are also) piresenitedl. Althouiiiiglihesigifiicance le(vels fur zeroI hicolnerene arl
lieisenl to statisticahlv detcect tlife peec rasn frn

litiear interactions. thre statistics of estituiates if hicoliereneee

anl biphilase, 3(wl w2) - the phase of R(Lt ,Lw2 ) - fur tire'
Case fr rnotizero t rue hirohererice have riot. previiirsly heern

ri(rteil. -1Iie pups of this study' is to prVeent such statis-
. I IM W(u ' I I0\ t ics. Brilliruger ( 1965). Rlosenbhlatt and \'arr Ness ( 196r)).

Hrillitiger atl lRoseruhlatt, ( 1966tr~h), ard others (see N'ikias,
Itispo' tI ni l tlx ;is has Iteell used to, st oly ri, otuliticar in arid Itgliuivever 1987) give suurme oft Ire statistical properties

''oi un ut u 'uri tof (ca pr'ess'sitt'liilirg sirftie oF liiglier-oniler spxectra, inicludiing as.\mrptotic (listriliirtiiiris
gIvt )0~ iieiidtt ae etls(lus'rriie f ilie, real anid itragiriarv parts iof tire hispectrirr. llauhrih
at. 9uW:). pi-I ntirhi t' s friom t lie tuean proFiles ofr temrpera- ( 196t5), llinicli arini (lay. (1968), lKir arni Powers ( 1979).
1 iri. saiiijtx ' . rd SIHn irtulxe'it. (RHidtiet l1. 1973), inter- liriich ( 1982), arid A\shle(y et al. ( 1986) discuiss Irle estitria-
roil wax]%'s I \(,it 'l% Iii awl Sh41e ' 197.5, McComnas arid B-riscv tioni of hiieoh crenrie.
S9AO). hIu .;uutig s'urf-u e gravity 0 wae (Igar arid ( tia 1985, 1or thle pxresenrt studfy. hiarrrornic rairdorin proesses wxithI

It )-'ring 'tl H3'wuii 1987). aiid tennilerat iire ritfu ia Iriii vtulies iiF hicuhererr (b2) lIetweeIl I). I atI 1 .0 were
I is t,; I\illir 1 197). A wviul' range of lxhineriitiei in utter tiitterecallv simriilated (Sectiuri 2), mtidI t(i st atist ics of es-
phi' ysirit 'x '',mls has als' lite investigated with t hi It ispee- t irtiati ,if liieulirerTiee( (j12) and hiphase (.1) oibtaiiedt frorm

riitt ~ N Has i, rhiive rl %%1 ras use'di review).lii tie( simrurlateid timre series We're ealerllatei (Sectionl 3). l Ire

Iwi 't r vr t III pi , ~ iss uinilon ii\v'sigiit itS a itisis atni t it', vatriance-s aridl ouuifidence iitnits of 6' arid 3. were dhv-
tetTit \%ii t111';1 r . latI us. S'pcilitull v. tiutilinrar ititirac Ifrinite as furitiois of arid ihu(Seetiuns 3.1.-3.2). I llese

;11" i'-'I;II"va\111's tiren iist'firl4fFrv i'chihritwoi rttxiarvdeign. t)ith Owut her huandil
I1 fifi,'I h' r, xi-. II;hri''h Kim ju atnd I'I'uvurs 1 979) -Ince ;tit i'xlirimrtit liii beitti' cnidied. rraximiri likeIi-

~~ ~i- I t'ihiiijies miaY lie uiseto i sntiti'l trite valuevs if b?
I - /r~~ -- - ____ --- ( I) and J lhuisel .it Owi Iusirvt'i \alius. Maxximumri likelihoodr

'~uuuiute F uihuuretee reprcsvttxd ill Sectionr 3.3. Hiloe

It h(I' is Jiflt itn. r''stlts art' thir h'rie'Il apliediuh t'est tates 'f rIicuhuer

O'ICid tu ~~hilmsi of tiarr hiattd suurfacue gravity' v ixivs (iIt-

* .. I K ~(.?)~w 1 I (2) s'.1 'dl iti 9 ttirtu'r w\ater ilipi f(';cItiit 1.1). ('tiluicis

FI" w iil Siet'itu I1
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2. S~ I )NIIII A , 1 llu(L) 1 It Il it' I has wais clipi rica IlIv Fundl it( I h e a ppr, xirInI vI 'v giv-il 1).

iov series c-nsist rig 'f triad' 4f sitiis''us (nillh Fro ISe 2  ((-f I 12)2(I

(11i'ices , :,and -) , I) wvere, nriorricalY silriliated err the(d

('l\It \ X\11' at tit ;l ai Dieg, Sitjerceotriputor (enter. 13.% lFrjI aI Ii f I I) i s s iri IIr I' hie r, trf ; ) todtrig e'x prssi o f fo Ir

'Enis %f, ,Ph,;vs woere (i, ,eri fr, tri a it ii iFIf r i rat' ii tt dm(ist ri Ihia s i i li guare I. ( ; itiiled by r oxpress i ns based ( n s( rivw)i a

1)1i -Ii 0t-- '2 -.). i' t oIr i I Wc 1 ' -I,- i'It''I coI, ' rt1 valu rf di d c't II hirist it' I Il'cFretI il argumietits (Iliriicli and~ (las' 19638. Kill

hI \iifI I j.Ir I,'xatti ti') . cIit i d tr f li o c ase *f a si itglo r na d: arnd lowers 1979), thle variattce of 6V was emrpiricallY found

t I ,.q(, :I t+ ii~q I,2 2 14 ac q ( ;:I (t Ith ttpjrxiitate'Iv

-I' (3 I'k2 = b~. I 6) 3 (5)

o ter' 7: L,)I + 2 o aIt 1 0a 1re ratI (,,I'1 ) mii phtss al , FpliiI'n (5 ) is simildar toI ft( arial'g'is apjnrtxitrlate ft,.i

,I Is; ti Idjiustahln' paraiteter. As a ifrri'ases rtit 0 AO to-'retical equation for colterertee (Jenkins arid Wafts 190)

.-. ) decreases frnti I.0 1,. il lr thre exatmph' given and thle agreenrieruf hitwoeet (r), arnd the silrutilatid data is
i II'(I II;IIit 3 1 a. tt (I ei no1 1, ~-C'I2) i Itie series V~celletut, as sliiwnvi int figure 2.

4tstn t'filit' f,11 liwng triads were simiiulated: a single ' ilaubjrii-i (1965) suggests that fir a process w%'Iith7 /
t riad. (~ iv,) triadls with itle sailte stil frequency,

I aIll (,1; -: A;3-.s;6): arid] Iwi' triadls Withi a c'- 0.0, /2 will aslymptotically, (large duE) apptr'acli a (di sqitar''

M-1fropincYt he lir than ft(n' sium frehunency,( disLit.-, iiri itit paramInttert/ = 2. Ilirtich (I 982)showts that

ititi values 4I.=0an were Iicihereni'e is approxiriati' astiptiahllv (list rilutu'd as
;ini (~ &s. [ue .aies - ad Ia muuon-oertral chi-sqlitared rarid' mu vatrialble. I lie( n'irt cenitral

t-]1,r vai'l ('awS, the trite lic'hlt'tetle 4 each triad, (iidl 7~islao(itrluin 'l orpi~mutdI n(~2d'
I' adjiisti'd. -1hei statistics'4estiItta es oIf licohlereicu' andt chilii-squ a dshramnowit aid ho giir). ivae lIv I Xd

hi ph, S rep' .rt o(I here' wr f 6i l i ' depend otil it I u r u0 AbaFi)i1 dS g tgvr .

;Ialue of F 1 anrd flI f; the, y dIid (Im u Jt t dn on t.hev nlitbe r of r/2 ?~)2 -

ais. tIer 'in u' it e t % I r i -dIs wereI iiterrT eltd, nor ott ( 1d- t.1)7 1

'litima itliti('series wore simtulated with ( aussiandist ribniteil 2('''l

I' iirinr ceflicietits rathevr t han miiiF'rrnl~ distribiited rani- whtere, l( ) is trhe ganritia finuctiuil. [Ie totean anii variatue'
liiti pha-4es (I Iga r ef al. If985 ariid references the'rin). )line ,rami vk 2 dist rihii ed rand re iikv aiad' art, rut atnd 2r? p. re.

riesiiltitig statistics; 4f / and ;I were essentially (denitical I, spi'clivel v. I[huts. thle paramieters (v mdi~ I' canl he det''rrritined
Ii', 'S ft hu ratl nit phase si fruil ationms. front the bi,herenee as

I "ch siniulati'mt c' 'tsisteri 4 geneiratintg miany roaliia- 22&1'

f 65.513C puttl tHIM' series. eah f Whiich W'3s siltl(i 1jhIj -"j

illd irI shirt setiris ' 25C; ptinuts. By enttseiible a\- v,\ ' ItV' (7)

ratgitig In, hiipc'Ii ru 'tIitIver all 2743) f die sht ro rccrs, (ituilig (5) and (7)' atnd using Ithe lbiased -lie4 hic''
-6111,11s , f lbu icnrrtice anil bi jhas.' wit 512 d1f wer' pr' Inerenuce,

dur',' Er'-r ii ach 1.3- itlittle series. IFacli 6,5,5.36 pin tt (Ifl)!'
r ... rd itli, tuls,oulbivitlod it'I IC, gr"Ipsif (S Islurt recrls. 2( ,2l 8
;I 1j"Tutu tip r, dltic itug est Inra tis nit I I 32 (11T 'fI itiI es %%i 111

'i. -f h- I 'e(ti 32 ;tu ridt,
2 werv A ,haiul idi i aI si til ar mi lrirc. A's b2 

- I nd/er df increases, the piarameter v' iricreascs

Ii'w fk'iiarid 4 Tiho t..51 it timoe series we(re gituoraiter. anld f,2 (01/v) ,ptpr,ac-hes a Gaisciar dlist rihiir. Pr( J)

;n.I ins,. WOtO df-5 t- ) '' t;0i ((il-J-32) tbic,ihorence aibililY y istrilmiitors of4 Itoe slitilatd data are citnipared toI

and khuarl stitiatos nr'pr-lilcud fr caii frill, valuev f( (V (list rillil ims. wit/i yr andI v hi airied fromt (7) 1Ai (9).
l, ho"i'' R-o'Itsilts fr' ni siriultirus 10n0t~t realizations rvspretivl' iii figiire 3. Acco)rding t,, a 1 g' n'(111e55'rflit

Vrn'r ii,1hirigiiisliablc fr, Ihluse wlu'rf, averages (fIFl~ ti' lst, the ft, eretical andf ohsvrveil uiitrikitliotis withI 32 df4

rt , ii; isw'rr' tisvil. arid h2 < (). id i' wa di/l'er sigtiivatttlv at tit' 9-75'X r(

fidelrttct' livo. I hero is o ehtter agreeemet as 62?

3 -dII \I ~\ t ISI~ ~Assiiiig h62 is tv\ (list ribitvIt ith v nd til given~f h%

(7) antI (8). r'stciottiv. c~iio litnils f r b2 (-til b, colt

st riitti s fuitci''s -F b2 anitf (1. 1 he Ott'X -'' 'ntiu"

limtits ;ire citritirerl t, (lit' lrr'sp'tiling ta' 4,;r''iervetd ill

-lw~~I I I In. /2 r5 ri~l '': irai cli Iria' 'li ft' It ,las' i I

llthi', v ill liar' a p "t 'lyi;ts. ;iiila r 1,, fi t" ,l

rdio r'. ''' i, I htrII i .' itle si-ris (Irkitis trdr '.hntuilr 1,, the Iis '4~t theli s'rcs flr'rtnul (Iikinus atnd
'Ii' J I, riuI Iv 1 t09A) I wg fitritgit (919) g\ai tIn 9fi.' tido" is.ii'iralv(:t'~



nut has iIniiiii(li't(in ilijis 'F JaIli n) hi'tn'iiiits liriiitolfvl\ ;II (IF

a I I ' ;~i - III(lisi ribi Irtioii %%ith vut\riaitie gioeli1 li% ( 9))

F. .1 .1 anF( ii td ti siriut('i values infigures 5 nit 6, 'sing liispitral anal 'vsis, Flgar and ( ;u7a (1985) cm
I c 111 ,i I') e(lI I.(It hat I na irowNv-bandIitf swillI ( pe ak peIio I ab1u11 t 1 6 sf,--

mllis) 'liserveil in 9 iii waiter depth %%as ". quialitativ'lv con-
si st I'rnt Nv it It Sto )kes- Ii ke i )itiitiea ri t ivs."' IlI iir c,',lI Iicisi I )ri wvas31 Nia"I-ir'm k1 h 'id I SlInlatiorl based -)ii observed'n %atuvs 4t lbihasl fir t'iads comnsisting fo

I I,, eili, if(,preiols so-lonsdecrie (ie tats- the po wer sp'ct ral v nun ry peak fre 1 ien ' I- (ft,) a rid its irst
ti- , .Ii'' i i wi gf t e i ''i ii th e ct imliS b2s, il th s en ab ln g fex harrnnm niirs. B-ased o il th e resu lts 1res elited a hinve , I ispe c-

O w d , i '. -.li. ,r' i f ilv ent he true i va u e , 6ic ' , r m P th us (nhtIng ra t stim a tes fro m thepse d a ta ran n ow be i t rp retied q u a n
V l'sjii F '~i'riiriiii t mesur biihrence.On ie titti~ Foir dlmf-256i. (bue 'ilser\,id values if liicmherence

;iwr hanl. it is fwni the c-ase ia I ' r'iiist bec estiniated and hipaeFrtei, 'etorlntjiswr 'f, ~
r iI a sinii'i ,i' dftia. in this sectionn nmaximumn lili- -hasp31 3f,r the two orde andad were~ b' .0 .(fP1 fp)

I 'siinti's lerkin ard Wtts(9(8) ~f lie(rie iii -3t5". (HicibtorerICCes at (her r7 (iaiii were not significairi
Fi .iri uiv in ,bserved value. iii with Finite iltd (IertI T vr.)Arnitn o ie!is

I reilin'h andu l'awka, (1987) pre'senit a sirur- 62 (.6)rdj2jp~) -
i I ao I\ s Is f.. -,i lniates 'ftI lie cross sprectruin, With reuM tf ~ I t n 6~ f ~ i-010ana' i' 'l-~I. ii 'S re' 'eilher Mxintur lieliimi ~For (14=rc256 and 1, as given above, 90W conrfideiiceI- Ih-serepriedher. Maimu liklihod eti- limits for lbiphase canl beor etnstriret 'd. l'or ihe self'-self in-

itiaiv ii,'' if ihrmiining, parameters oft(le undierl 'ving leraction ji (J fri 2,), t lie 91% limits are ±. 1:3.5'. IThus, tlie
Pilf ri iii saiill'sf tF ire (list rilition. I[lie Pd F is rt cast as observed value (-7') is withiun the 90t' 7r limits ofthi' Stokes
;I Fnnuiiii -iiF III, i'arariiers ti ble dletermniedl, arid] tlose h'iphase, 3= 0'. and the idata are consistent, with Sti,!ws-

ihs F i It,, a ranit ers iIi hat Ma Xiniiy thiis li kelihiood fir ii( like ruonlinearities. OIn the other hand. 9t)% coinfidence limnits
ii., n' i iiireil ieI( naxineri likely estirrates (rile) tf fir the lbipiase of (lie triadl (fI f2, ft3,) are ±21,60, and doi

l ic I Fl, (iaraiii''lers -F thfe iinderlvoiiig dlist rilution given the n it include thie observed valuie (-35). ('iisequcentl1y, with
;ouaril irr 'sanlplis att hiarid. I 'r 11ie case of bicohererice, I te ai0 osblt obigiorci i oh dta hlik'diti -d,,' IFirii-ti.I 1 (2). is; givel 'N. ivle (ook ilist rilmuttioni a 6 oshi io' of eig iso Consisteit ih c okluded t ha th

(I'))) anfd is shv sarnlono o n l liricarities arid that shallow water resonance effects (1"reilicu
fige 7 1 r lrge\alws r df, J62 isN and (;uza 198.1) are imnrportant.
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EFFICIENT MAXIMUM LIKELIHOOD USING HIGHER RANK SPECTRAL ESTIMATION.

Ira J. Clarke

Royal Signals and Radar Establishment, Malvern,

Worcestershire WRI3 3PS, England.

Abstract a) the learning stage - represent knowledge as

relationships between cause and effect as observed
In practical data processing applicatiots, an engineer is through sensors. It is also necessary to predefine
required to develop a processing system which selects one output actions since otherwise there is no point in
'best' option from a span of possible interpretations of the performing DSP on subsequent data.
data. A fully optimal approach requires a search through a b) the processing stage - infer, deduce and/or estimate
full range o predefined complex high rank solutions. The the most probable input conditions given limited
solutions on offer must have a sufficient nttmber of degrees samples of sensor data (the inverse problem -
of freedom to cater for complex scenarios. It is shown that observe the effect, find the cause). Initiate output.
a well supervised search is significantly more efficient. The basic functions are of interpretation and decision

taking, based on limited evidence.

1. Introduction c) the hardware implementation - develop cost effective
computing hardware able to satisfy the computational

The primary objectives of Digital Signal Processing (DSP) are demands of a suitable high performance algorithm.
inference, deduction and/or estimation based on limited
observations through sensor systems. Modern high Clearly accurate representation of 'a priori' knowledge during

discrimination DSP algorithms have been shown to have the the learning phase is a prerequisite for the optimum

potential, in ideal conditions, to greatly enhance signal interpretation of sensor data. Errors are likely to lead to

acquisition and tracking performance in radar, sonar and false decisions. Without due regard to the possible

other sensors. Although it is generally accepted that it is not conseouences, it is tempting to simplify important relationships

possible for any signal processing technique to violate basic between cause and effect. The use of standard assumptions
information theoretic limitations, it is easily demonstrated by and convenient, but restrictive, mathematical models is

simulation that, in reasonable conditions, the resolving power common but, as a result, engineers acquiesce to performance

of modern algorithms, such as MUSIC, exceeds that of the loss and/or tighter (more costly) sensor specifications. It is

long established Rayleigh resolution criterion by an order of surprisingly difficult to separately quantify algorithmic

rnsnitude or more. Iligh discrimination algorithms can also shortcomings and modelling deficiencies since information

recsole signal; w~ith magnitudes far below the sidelobe leakage theoretic performance limits are often ill defined in absolute

let:ls of large signals and interference. However current terms. Robust algorithms are intended to withstand possible

adaptive metho)ds are not robust, they require relatively high deficiencies in the representation of knowledge resulting from

signal to noise and are susceptible to small errors in the the use of imperfect model criteria. In principle, since we

ool).teral kn(,lkUdge needed to solve generic underdetermined can never eliminate uncertainty, we see that the optimum

problems of the type associated with resolution limited sensor solution requires a) that we extend the models to include

sstnems. estimates of uncertainties and b) we develop algorithms able
to utilise this data. Currently relatively crude control of

This piper attempts to draw together insights from a number response characteristics is sometimes attempted by the addition
of disciplines and puts forward several basic ideas and of artificial 'white' noise.
c-onccpts appropriate to tackling the generic limitations of
existing si.nai anaissis and control techniques. The aim is to Clearly the above principle is valid only if the problem is
develop a methodology which fully stretches the flexibility of over-determined. In general, we see that, in addition to
molern parallel computing technology. By way of illustration, sensor data, 'a priori' knowledge is essential. However this
the principle features are introduced of a novel multi-stage knowledge may itself have some degree of associated
nath ix decormposition algorithm based on concepts which uncertainty and should, by the TLS principle, be given a
f,cilit te the explriti-,n of 'a priori' knowledge. Many of weighting factor via a suitable algorithmic procedure.
he qJuVstIons pt,ekd in the paper are however, as yet, only

ie a ,e nrl We begin to realise that the learning stage must include
.t sa. c estimating the structure and statistics of anticipated stocastic

2 T he.__( ,,k observation uncertainties together with errors in all 'a priori'
SI i),, i _. models. Clearly this information is best obtained by direct

measurement rather than by inference based on qualitise
Pi;,:1 sp,,ria, st:kgcs (_,m h , idenutified in the design of a features or from simple 'guCsstiiates'. The use of artificial
'r,'1 ':,hd tih p rform~i(e signal analysis system 'white' noise as a simple indirect way of controlling algorithm

response must be regarded as sub-optimal in most respects.



Theoretical performance predi,(ions should also be based on field of view of an antenna array. If Ir is sampled discretely
the total uncertainty in the available esidence. on a grid then we obtain a set of discrete reference vectors,
2 2 The corputa tion hadsare, the full set is ccomoonly termed the array manifold. In

paraetric modelling problems, we are required to record at

It is Aell known that pa raIk IComputing Systems require least one template per classical resolution cell in order to

carefulsatisfy the well established Nyquist criterion. Frequently it is
miniisef egn. aciectes an bcosmeicain req nts necessary to provide an oversampling factor of two or evenminimise memory access and communication requirements three to minimise loss of peak signal between sample points.

betaeen individual processors in a given application. In general, we shall need to interpolate either to generate
Remarkable improvettt" in . icieo~y and power i nte rmeittmpasorognrtepcrlorikihd

consumption can be achieved but at the expense of ediate templates or to generate spectral or likelihood

specialised development effort. Economy of scale comes from estimates between selected grid points,

multi-function software and mass produced hardware which, 'Ve can also define a set of rank one 'matched filters',
in the DSP case, can perhaps only be achieved through a a (0), such that:
sound design methodology. at().a(t) = I for each 0 (2)

The mapping of an algorithm onto an architure can, in where denotes the Moore Penrose psuedo inverse. For the
p rin c ip le , b e a tw o w a y c o m p ro m ise . It m a y , fo r e x a m p le , n& h e re b a n d n r a n k t n e M a s ee P tn f ose o w s th a t i th er r o w F e ct o r

be possible to realise significant coniputational advantages by atro) rn givector

utilising available hadare devices and by modifying minor at()) is given by:

featr!'s of az, algo, ithi. a ( o ) Lai(s).a() ]-.an() (3)

In general theuie are key algorithiiic functions which constitute where h denotcs the Conjugate transpose ot a vector or
the majority of the computational load. These include, for matrix. The conjugation rCerscs phase shifts introduced
example, eigen decomposition, mati-ix inverse and spectral between emitter and the individual sensor outputs or sample
estimation. If 'ny of these stages can be eliminated then, points. The magnitudes of the individual elements in a(0)
potentially, there are substantial savings. We must therefore determine the relevance factors discussed in the previous
consider all aspects when developing an algorithm for a given section. The vector inner product term ,ithin the brackets
application, has a single value at a given pointer position P; to aid the

reader more easily identify such cases, underlining is omitted.
3. Blasic concepts in high performance data analysisa. s ri t h ms Clearly the calibration process must, in principle, be repeatedseparately for a representatie number of values of 0, at for

3.1 Array manifold, example, various emitter test sites, to give a set of matched
filters and reference vectors. It is, however, common practice

As already stated, the primary aim of the learning phase is to employ various mathematical data compression techniques
to ;". '.use to effect and t!No to designate the output and analytic models to simplify the description of the
action. The first conceptual step is therefore to tentatively set templates. Such models reduce storage requirements. Also, if
up a system comprising suitable sensors, processing hardware the underlying problem is continuous, interpolation within the
and output devices. The next requirement is to define the discrete grid of sampled points and, to a limited extent,
operations to be performed by the processor. We must extrapolation outside the sampled range my be eased.
therefore present a known test input scenario to the sensor However the use of a convenient mathematical model often
and demand that the output devices give the appropriate puts costly restrictions on the system design.
response. We need first to record the sensor output state as 3.1.2. Expanded array manifold - Multiple emitter case.
a template or fingerprint for future reference. If the similar In a complex multiple emitter environment, a single rank one
identifing features subsequently appear at the sensor Output template or reference vector is no longer sufficient to model
then we shall infer that the corresponding input condition has the sensor state. If the emitters are not coherent, then any
been re-applied. Clearly it is preferable that the template as
observed through the sensor should be unique at least in attempt to collect real data at every possible combination of
some small way, emitter position, 2'' ... 0m' suffers the obvious difficulty of

a cooihinatortal explosion in the number of separate
3.1.1 tAsic concept - Single emitter case. templates we require. Further still we must include also a
Successive frames or snapshots of sensor output data, represent. -e range of different relative posser levels and

d , should be capable of description in terms of the phases.
of a s0 'g, steering vector and a series of real or We note that, for a linear system, the resulting sensor dati

complex weights, f, f; .. plus additive measurement error:
vectors are linear combinations of the templiates, a(v "

(,...]observation errors (I)a( 0)) a(- ), corresponding to individua I emitters. Suih

We denote the refernce sctor or temnplate as a complex linear combinations define a subspace which can also be
Sdente )h refereColmnc vector or(temp comerasing codefined by a set of orthonormal vectors. Therefore given the

eor eal salued column vector a(g) comprising pnd basic array manifold for single emitters, we can, in principle,
eaent temlt i sccat a suitue referespond synthesise the appropriate candidate subspace for every
to an emitter of unit power at a suitable reference point, allowed combination of emitter parameters. We can economise
Ihe pointer, , repesents a discrete or continuous variable, on storage at the expense Of computational loid, by deferring
or set of variable parimetecrs, hich indexes a given sensor the synthesis task until the search or processing phase where

lerI. my eilate to aninUth, elevation, range, we can compare the incoming data directly against a set of
,, titid. c rrr ort dopler frequeny eioan rehccte, computed candidate subspaces. The span of the basis single,~i carlier or oppler frequency in any selected emitter array manifold has therefore b cn e xpa ided toti n r 1 nh:e !e linclude higher rank templates. 7n, .Icth pro ,ccs f,, in

cIlor rlts. I hc ,i, d Ih'noted /', chfines, for example, the efect, a higher raokt smpct es. e 7tt, tiht tn

2 ee a



In practice, however, there is a daunting problem: the sheer with little difficulty (Clarke 3 ):
size of the computational task caused by the combinatorial
explosion in the number of templates. In tite majority of D m = AmA.Ilt (7)
applications, a full multi-parameter 'Maxim-m Likelihood' A A [AhA]_,Ah.
search of this type is well beyond technological feasibility in, - m - -n. . .

for example, radar applications. where A. defines a column matrix holding the candidate

[he only clear option which retains the prospect of near vectors, a(o), ( .... A(om). Arnt denotes the Moore

optimality in the nuilti-parameter case, involves resorting to a Penrose psuedo inverse of A. The corresponding estimate,
limited but well directed search of the most likely set of in de rank ' d taa as

snthesised candidates. Clearly if 'a priori' evidence can be in the rank one case:

identified %hich predicts a partial solution, an approximate Em 
= ) Am.[AhAm--Am]-,Ah' (8)

solution or a small range of alternatives, then a large =1 Am.[Amh Ay ,.Amh
proportion of higher rank solutions can be eliminated
immediately from the initial search. The full higher rank = Drn12

(Maximum Likelihood) spectral estimate need not then becomputed. where R, denotes a residue at model order m an d ir s .the
corresponding signal blocking transform. For gaussian statistics,

The directed search approach provides the basis for novel, minimising the trace of the covariance matrix pm. m
h 

or
computationally efficient, multi-stage algorithms discussed in maximising the trace of l)mh (the higher rank spectrum)
Section 4. against the parameters 0 2 ' . 0. leads to Maximum

3.2 Reduced rank TOdelli of daita iatric, Likelihood parameter estimats o,_... m at model order 'W'.

We see that a rank 'i' LMS version of the data matrix can
also be regenerated from the decomposition components

We see that a '() operating on a series of frames of data . a

d _I .. re-generates estimated values, f( ', or the series of a in) and ( We are free to use the
complex emitter 'eights (refe'~rc to tie input reference components and or parameter estimates for 'khatever purpose
point e is intended of the system.

(4) 3.3 1:1ckernUnd interference and observation uncertainty.
_ = . , .A typical requirement of radar or sonar is to 'acquire' and

'track' an unknown (variable) niber of possible emitters or
reflecting targets. If the numbr r of targets is not estimated

shere, for notational simplicity, successive frames of data, correctly then severe tracking e rors usually ensue. Frequently
d... . are held as a column vectors in an 'ns5 by nf' the signals of most interest are by far the weakest and are
matrix 6). \Ve must regard the regenerated weights, f(a), at easily masked by sidelobe leakage. In order not to over or
any candidate value of ,, as estimated values due to under-estimate the number of targets, contributions from
incitable uncertainty both in the at ()) vectors themselves strong signals must modelled accurately since otherwise
and due to the observation noise added to the data vectors. modelling residues may either appear as additional targets or

Svstea attenuation relative to the chosen reference point, may prevent the identification of weaker components. It is
which in practice generally varies with 0, is directly also clear that an algorithm must have access to sufficient
accounted for by the scaling factor included in the a(_) discriminatory information to enable background noise and
templates and therefore also in the inverse operators a t (a). interference to be differentiated from the 'real' signals. Such

Given computed estimates i(a'), it follows from tire original information is best provided explicitly as data in the form of

definiton Fmuti esthat we ca lsfsynthe rank quantitive statistical estimates of the various backgrounddefinition (Equation 1) that we can also synthesise a rank Ii eoe oepiil oeln
o ) components. Much effort is devoted to explicitly modelling

one model of the data vectors (at any value of ): the properties of interference and to developing corresponding
Sa(aZ).jh (.) = [.a(S).at (.) ].D (5) algorithms able to efficiently exploit these models.

The resulting estimate, 1 1, represents a rank one model of We see that DSP algorithms are required to decompose sensor
the iCaisured data and can be compared directly with that data into recognised basis templates plus deterministic
d:ita. The difference (predictable) background components. An acceptable

t= (- a ().a )(= [ - a (/') .at .) (C) candidate decomposition, when reconstituted as a model of
is - - - - -- the data matrix, should match the input data to within

bounds set by the stocastic bounds corresponding to that

detres a modullini, residue, as a function of '. i s  model . It is therefore the total observation uncertainty which
d ' 'should determine whether a model of given rank is adequate

need to retfir ti pnattixi th the ural efintl or whether a model of higher rank is required or whether a
:1,).%c WVe Lcn tvcr id i s a )t hnul NoAng ma trixt simpler model is adequate.

ou tho. i' I nd a ' 1 Ihe rank of the 'n s by ns' We tow proceed to examline the fund.iLinntals of spectral
mutiIx , is 'n,-l'. The rank of , is I,ss than or equial to e
'ns-l'. A rank one 1.51 solutin, as a function of s. can be estimation wtch is needed as part of a basic toolkit for

ond y ii mising the trace rf the matrix .'.., K h or of developing algorithms.

,h ._. , , Ve see that tie trace of I) .I ) h. or of I h l ) 3 4 R ink one s ectral tIina iion
plotled as a flcti n of f;, is equiivalent to rank one spectral
est in io tn. 3.4.1 Basic version.
3 2 2 [li-her rank muellin,, using templates. It has already been indicated thiat the majority of DSP
lI enrincip11c given aoie extends ti higher rank modelling algorithms are based on spectral or likelihood estimation in

2 i



some form when attempting to determine which of a number an identity matrix. The major application for the transform
of candidate solutions is most likely. We have seen that prior W is as a pre-whitening transform chosen such that the
knowledge of a basic array manifold or library of templates is spectrum of M.Mh is isotropic. It can then shown that if the
required trom which higher rank models can be synthesised matrix Wh. iTW is forced to be an identity matrix then,
and we have seen that a reduced rank model of the data can for Gaussian statistics, the resulting spectrum is related
be generated by a projection through a candidate subspace. monotonically to a spectrum of likelihood ratios for the
We define the classical power spectral density estimation corresponding rank one candidate solutions.
function, for rank one templates, as:

( r ( a (9) We can explore the effect of a weighting transform by
d - L5 ( a9 replacing the data matrix 6 by any selected reference

template. The resulting spectrum defines a 'point spread
function' from which we can estimate the 'leakage' from that

ah( 0 )a(" )  template into filters 'matched' to each of the remaining
- )- templates in turn. The width of the mainlobe and level of

where the 'eai valued normalising terms, ah( ).a(f), may sidelobes is of direct concern if we wish to identify more
var with 0 due to system losses and, in principle, may be than one signal component.
far from isotropic. The matrix L )h defines an estimate of
covariance for the data. We assume that all covariance We note that we can also include a projection transform in
estimates are normalised correctly according to the number of place of or in addition to W. A most useful concept is that
frames and any weighting coefficients employed in the frame of exploiting 'a priori' knowledge via a signal blocking
to frame integration, transform, Q.

1The value, ' max , of 0 at the maximum point of Sd(-O) 3.5 Higher rank spectral estimation.
identifies which rank one model best models the data. The
summation of error components is based on a power or mean 3.5.1 Basic version.
squares metric. The error is minimised since the total power If we are presented with data from an unknown scenario in
or energy in the data is constant - partitioned by projection which there may be multiple emitters and we do not have
through a subspace between the model and the errors: prior estimates of 'in' or of 0102,..Ornthen we need to

O) = Trace{( - a(i).a (I). find a solution with sufficient degrees of freedom to model
-_the data. We must therefore be prepared to synthesise and

Trace,, .D (10) compare candidate solutions at different values of model order

If the templates, m, refer to discrete samples from a 'n. Based on standard scientific principle, we normally

continuous function of, then it is generally necessary from prefer to select the simplest solution which is ccnsictnt with
naccuracy viewont,. to, interpolateray teesoy find th observed data. Clearly it seems sensible for reasons ofan accuracy viewpoint, to interpolate Sd( ) to find the computational economy, to compute candidate solutions iii

maximuml, sd( mx. A three point curve fitting procedure is cmuainleooy ocmuecniaesltosi
gnrally me Aefic eent cre sttin a s small groups, according to 'a priori' estimates of relative
generally more efficient and more stable, in a DSP likelihood, curtailing the search process when a satisfactory
ensironment, than a (two point) gradient ascent (or descent) solution first appears. We can, for example, generate
method. Given any interpolated 0." it is relatively easy to likelihood spectra for candidate models in strict order of
find the corresponding template, a if needed. increasing rank. We therefore generate a separate higher rank

3,4.2 Modified spectral estimation, spectral estimate at each value of 'm'.

If we algorithmically modify the output of the sensor by a At each value of 'm', we must select candidate basis
weighting transform or filter, W, then, to be consistent, the templates, a(0), a( 2) , .a( 0 m) which we can represent
:ii~iv manifold templates I3.3 n '.[. .1 should also be (0 '

i mnifold. teplate tha d hsodaas a column matrix denoted A. A corresponding 'matched'

similarly modified. We note that: filter, A, 0 t, can be defined by:

a) the sensor system inclusive of transform _ can be Am .Am = 
1m (12)

regarded as a modified sensor, where Im is a rank 'in' identity matrix. If observation noise
b) the effect of the transform need not be isotropic with and interference has zero mean then the rows of A can be

regarded as matched filters for the columns of A \We
c) the Mean Squares metric is also modified, we now have therefore need to remove mean background components from

Weighted Mean Squares and the data covarianee estinmate: .I') h - CRh.

d) we may concatenate several such weighting tiansfoiis.

If the 'm' basis vectors aire linearly idthe the

The classical rank one spectrum in the domain of the inverse opeator, A can he lomput dsn th te
inverse compute trAn ca beC11LI usingV thle Ntonrle

modified sensor becomes: Penrose psuedo inverse, [ Am Y-'.At0 h. by SV) r by

ah ). \.[ h .l'5h. W ].
h'a (a) utilising the Wood hury matrix inversion lemma. The

(I) corresponding signal blocking matrix is:

ah(0) W\ha I) (1 = I - Am.At (13)

Thc r,,m.:ii',iug ctrm, 3h (a). \i,'h ./. ), ag:in conpensates

for system lsses as a functimi of f, irrespective of the chmice A rank 'mu' power density spc (tial estiomate can be defined as
of xeighting transf,)im. Numerical diffic ilties may however follows:
,cc,,r if the denimu , pitr a ,pu ;ich.s zero, m _, . m = Trace{ .. .[I).lihR li] . \ )l {

4)

We ihhs ',c thit the ,p:ctium is isotropic if \Ihi 1 i)[)h W is Simijarly, a speclrum of the ormdtllig icside is oisen 1v:



Rm 1 ) =Trae ~[1) l~ P.R~' ].?, 15) Clearly, we need identify the principal maximum alone at any

Miaximising S,, or m inintising P,, as a LIinCtiOlI Of all stage including the first. This approach is potentially

param-eters is equilalent to choosing the best rank 'nsl model advantageous since this ma ximums should not be due to a
in a LN IS sense and i s t h eefor Ic Potentially a good sidelobe. I t is also becomes feasible to avoid preliminary

a pp ro snat inn to a N a Xi in ciin Likeli hood SoluLt ion a t that e ige n decom pusit ion by comnp uting the spectra directly from

ra il k. the whitened difference matrix Wih.[ LDDh-R.Rh ]AV . This
approach forms the basis of the Incremental Multi-stage

-\,, e sample oif a rank twko spectral estimiate is given in l'aianieter estimation algorithm referred to as IMP by the
Fii! Lire I ci here the s ertical1 Scale Corresponds to S,, and is author. Decomposition components are found progressively in
litlar in the weighted squarCsl metriC. The arrowxed values Of decreasing order Of Magnitude. Figure 2 shows a progressive

I !finc eimlitter pramiets used in generating simulated data decomposition Of simlulated data from a sixteen element linear

Ju framies fromn a linear antenna array. The and I, array 120 framses) in a non isotropic background. Suiccessive
oidmic~ts ale in the hm ibonta Ikkplae and nMay, Of Course, be difference spectra each represent a least mean squares
oItcI hJ need. We therefore obsers e S% mmetIy about the modelling residue at a given signal model order or rank. The

.lia, ool~l line c sib rc \,e might exp,.ect to -finid the rank MaXimumn in the spectrum at each stage is regarded as the

01Cspctrum111. loss the foregio symmetric half of indicating the motlikely nx eopsto opnn

seleC ted 0lnts i5 CuLt Aals to r evealI tha t the rank one which is then included in the signal model. All Simulated

,p'l (rs Isolid line I is ,m's Ikcdly different from the emnitters have been located in tNs %ay. The final Spectrum
roll espond in lg ank t o sect ion. Ihe effect can he explored (hatched) uIses the corresponding Signal blocking matrix to

m tlen t~ li hrealtlatim' tile limit AS H 0 \ si-i check, againist a threshold, that Ldominant spectral components
11iltIt-on 14, futrther consequences on ahpnrithin performnanrce do not remain. The filled diamond symbols indicate estimates

c:ii ul ecal~liioII of enmitter 'ow'er _using signal extraction filters defined by
WA hW.~ A,, w w

52C nmputItio o f hi' iii ijnk siec-Ir-u
ii I tl;it: The effects o f leakage (sidelobcs) cannot be comtjletcly

Suppressed via the signal blocking transformis until one or
\ \ [l~~b I R's N 161 more signals have been located accurately. We realise that

\ \ I 1 __ _____ h thle Parameter estimates 11rat(o1V available at a given modlC
IiA.P .. [[5sh PRh] [L ,, m ~ ndr ', are generally subject 'to significant residual ba u

old ti' A to this leakage. The largest remaining signal component is

A hI-)T I[I -hleast affected and the corresponding principal ma simun) in
:!,~ - the spectruLm should correspond closely to the r equired

i ss . a se t ot points i oni the basic r a nk Ole maximum. Therefore, immediately after the modlei order has

%kcii .ilso~ oi~c i tt, ['it ~ coipiceios been incremented to mW, the 'IMP' algorithm is set uIP to
Lotmnt ccii' ci C ) lie pirecomputed. Thle perform a localised (unimodal) maximum likelihood search

l,!Ic J WIi iislit.C rse rin cmliutItilil lSimple if 'm11 is involving small iterative adjustments to the parameters of
each signal - before recompuiting (-rn and proceeding to the
m+1 stage. It is essential that this iterative optirnisation be

\c isuc tilit clheir chimctions shoiuld lie drawn betwkeenl allowed to converge sufficiently in order to ensure that, at
Itii ii Ills iii~atmlIasi p'r0icdLlirs dule to i ) know ledge stage 'm+1%' residual sidelobe leakage is adequLately suppressed

Hci etIII I ilciuritbo'sic cciiiencies iii ) latck of rclative to the smaller, as set unideCntified, '111+2' emitter.
The ii.oiit isC ill itoid misilsin tOe future path of tiled-- l from s s s1 1 i lc k o f 'a1 pror 1 Prort is avoi iluciet h

I ~ii I viicrs:Ifomi eetlinicS. serhtowards a sub maxim-um~.

I Ini ti 1CCsirsmccr itiatin.4.2 Model older control.

4.1
Abe I MP algorithm makes available separately optimuised

II th is 5Cc thirl weC d is'U ss OW the guidelines sugg,,ested by tl'e msaximum' likelihood soIlutionIs at each model order - this
hu :tmo ci is sstaeceptis is'igot lie t ixpn prace presets a Multiple hypothesis situation in its own right. 'The

II Ils' ~ ~ci'siIstla c csped stii' ofa th c pade aray choice of a suitable msodel Lorder Sl'OUld depend directly on 'a
ii if- IK'ocept 3:111 1l l hhr ra14 spctrall e.Stililation based priori' input. This may sin'slyl take the fornm of threshold on

ii- 't dLIIt search. Abe basic illustritive cxamphe chosen the finial spectrums but clearly, for each candidate siginal
: ',ilCS itl iV lo,.tJ(, liIi~ someII of tle i,-l,,,nt1  tiitt'inis model -''io;ns in the estimiated Values Of individual soatial

fid lt tub cently vmlll t'ilih ,Cliuitioi. igi- i positions and/ior wavefurnis can bie derived and exam'ined.
I h ct A ; h 1e rl u 111 IC rsl ii, cstillitir" O 11'ssrdrl Ca ndidate signal components can, in principle, be included cr
,oiiki' if m,:ii'ifrld ,l ,n'ilsinris 'seded to eXCIludedL fronm tse miodel on a franme by frame basis. This

I Iiis li Ilclijii[IIO ) c~lie is li~irwd aprIoICh potetially Offers a signifiraTnt ada%'sCe OiiC crrit
<or-s; f i.1 r.tinil to iilcntif.% adiptise irliceddirs in v'hich Sstt arIlileHs aiid mIOClI olsde~r

WI .. III II's ticlic if i''C itil'l aMc Iia lled.

li'siprcsc(d st~di'iil c'btincdt 1) 1 SUCI' imeans shou -;l d L nabie

1,1,,: I~1, ekm's iri~tiix, 111 o ll'I 111 to ~ i~~ s.hoes, 0'. toi iN iiic more acciiiatels .T ee
\ 1, irk -cI i% Ole I e~iiiitrs, tI, utilici with st.,ttiil irliticis, cans be C0i'sser-tCd

W, cii, C ' I ic to .i 1 Iodci o I IIt!c ick to .u lik1 hhlool fuhinii -i ld c hi e cinisc

1"7 th'ii i ; i '5 iI's'c~ the liii hoig it-iiei icT l ielyS k1 itll IILOc mii'sgI Jatm to gI' ( 'lCSS noisy' LiPLI ales to
t ' i I t' 1: 1i,. t, i Iv Ii s ri I the likelhood spcctrt ( I lie loweri model i'rder Stages of INIP

I ~ ~ ~ ~ ~ ~ ~ I n-esIna '- i I ci lui lie lij.sclgiscol mi'll eltiio,'tes Of ~lSIic



track behaviour of the salues of v can be monitored, the allow computationallv efficient algorithms to be developed

salLs at t"' new time can be be predicted before their use based on the principles of maximum likelihood and data

as 'a priori' estimates. [he etfectixe integration period ca fusion. An important conclusion reached is that, if 'a priori'

then be extended since the usual constraint that parameters likelihoods can be generated, then the order of search chosen

must be stationary within a block of data can be relaxed, can directly affect both the result and the computational load.

The technique for increaaing integration aperture is analogous It is suggested that this approach is currently a much

to that of the extended Kalman filter with similar potential undervalued method of exploiting 'a priori' knowledge.

performance advantages in difficult scenarios. In addition the
restrictive constraints of fixed model order and s'ow track A robust 'near optimal' Maximum Likelihood algorithm, IMP,

acquisition are alleviated by use of the directed search based on the computationally efficient directed search, has

concept. been developed. The technique eliminates the well known
limitations on resolution caused by sidelobe leakage. The basic

We realise that, since the search is multi-parameter we can, concept contrasts with that of existing techniques which do
in principle, use an extended array manifold which includes a not allow for the inherent variability of sensor calibration.
model of potential calibration errors. We can then optimise The challenge is to develop the methodology and evolve
the parameters at each stage of the processing. We may complimentary hardware and software for real applications.
update slowly changing parameters less frequently or on REFERENCES.
de . RFEdS

Since the parameters of a model are generally not I Schmidt RO. Multiple emitter location and spectral

independent, a parametric optimisation procedure is often parameter estimation, Proc RADC Spectrum Estimation

highly iteiative but, given appropriate 'a priori' models and a workshop, pp 243-258, 1979.

reasonable algorithmic routine based on a directed or 2 Clarke IJ. Robustness of eigen based analysis techniques

progcssive search, convergence is normally reasonably rapid. versus iterative adaptation, RADAR 87 IEE Conference

Computational efficiency can be improved by scheduling Publication No. 281, pp 84-88, 1987.

parameter updates according to rate of drift. Sensor 3 Clarke IJ. High discrimination detection bound and

calibration, for example, would need to be updated relatively model order control, SPIE Conference Proceedings, Vol.

infrequently compared to the parameters of a fleeting target. 975, San Diego, 1988.
4 Mather JL. A Monte Carlo performance analysis of

5. CONCLUSIONS. accelerated SVD-based high discrimination algorithms,

It is concluded that 'a priori' knowledge is essential to Memo no 4083, RSRE, Malvern, England.
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BISPECTRAL ANALYSIS OF THE EEG IN DEVELOPING RATS

Taikang Ning and Josoph I). Bronzino

Departm'nt of Engineering and Computer Science,
Trinity College, Hartford, CT 06106

Abstract: states.

Bispectral analysis was applied to the Although bispectrum serves many purposes it
electroencephalogram (EEG) recorded from the was computed and utilized in our study 1)
frontal cortex and hippocampus of the rat to quantify any vigilant-state dependent
brain to examine the presence of quadratic deviations from Gaussianity and 2) to
phase coupling, as well as its deviation detect and quantify the presence of any
from Gaussian distribution during different quadratic phase coupling. Because a station-
vigilance states. Bispectra of these EEGs ary Gaussian process has a zero bispectrum,
were computed for normally developing rats the amplitude of the estimated bispectrum
at different ages. At almost all ages it was provides a quantitative measure of the
found that significant phase coupling oc- degree of deviation from Gaussianity, In
curred within the hippocampal formation addition, the bispectrum is also capable of
during REM sleep between the frequency detecting the quadratic phase coupling, and
components associated with theta rhythm. It its significance level can be further quan-
was also observed that deviations from tified using a bicoherence index, i.e., a
Gaussianity of the cortical EEGs follow a normalized bispectrum. Recently in our
consistent ordering with cortical EEGs laboratory we reported in using bispectral
recorded during sLow wave sleep having analysis of the hippocampal EEG during REM
greater deviations from Gaussianity than sleep that a strong phase coupling exists
quiet waking and REM sleep, between frequency components associated with

theta rhythm [8]. These studies provide
important insights into the frequency con-

Introduction: tent of the EEG obtained from different
brain structures during various vigilanceIn recent years, the utilization of higher states.

order spectra has increased in such diverse
fields as radar, sonar, geophysics, and
biomedicine, to extract useful information
not obtainable form the second order spectr- Bispectrum Computation
urn (power spectrum). Of particularmpor-
tance in higher order spectral analysis is Bispectra o1 the EEGs were computed using
the third order spectrum (bispectrum) [1]- the direct approach of conventional methods
[5], which by definition is the Fourier [1].
transform of the third order cumulant se-
quence. The theoretical background, comput- a) divide the EEG of each vifilance state
ing algorithms and application perspectives into epoch of 1024 samples Ix (n):
of bispectrum has been well documented in n=t,...1024, (=I,...L (1 indicate the eth
the literature [I]. epo~h).

Currently, most quantitative methods for EEG b , compute the FourierMtransform of xl(n
analysis implicitly assume that the underly- to obtain fX l (w)l
inz random process follows a Gaussian dis- f I
tribution based on studies using the Kol- c) estimate bispectrum
mogorov-Smirnov test, chi-square goodness
if fit te!st, and skewness and kurtosis [10]- (1)
[12J. In thia ,,tudy we utilized bispectrum ) \Th( )X\ Y( X' '( 1

+
±

to oxamine deviations frum Gauss ian dis-
tribution for IEGs cotloc ted from the hip-
pocampus and the fr,)ntal cortex of rats at where * denotes the complex conjugate.
di f frn t his diring various vigilance Because of the utilizatie, )f FFT in step
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b), the computation time is much shorter Our results alsi showed that the bispectra
when compared against the indirect approach. of hippocampal LEGs during REM sleep exhibit
It peaks (possible presence of quadratic a significant. phase coupling between fre-
phase coupling) were observed in the es- quencies in the theta range (5 to 8 Hz) at
timated bispectra, a bicoherence index was all ages except one (see Fig. 2). The com-
computed to indicate their significance puted bicoherence index at those observed
levels. The index is a function consisting peaks were summarized in Table 3. The phase
of bispectrum, B(wl,w2), and the power coupling occurred for hippocampal EEG during
spectrum, P(w), i.e., REM sleep may indicate that the theta rhyth-

ms generated at the sites of CAl and dentate
(2) gyrus in the hippocampus interacted and

,,-. + produced higher frequency components.

In conclusion, the results indicate tL','t the
To quantify the non-Gaussianity of the EEGs, bispectral analysis of the EEG can reveal
the sum of the magnitudes of the estimated extra information not obtainable from the
bispectrum was adopted as a power spectrum and may provide insights
measure, i.e., regarding the formation of the EEG within

different brain structures during various

D= Z JB(-,._2' vigilance states as the animal matures.
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Table 1. Deviation from Gaussianity

of the Cortical EEG

g REM Cw SWS-1 SWS-2

a4 .699E.3 587E.3 .938E+3 .118E+4

18 215E,3 .640E.3 .230E.4 .395E-4

22 .1 04E-3 .327E+3 .176E+4 .446E-4

30 135E2 353E+2 .344E.3 .662E+3

45 .228-.2 .155E.3 .439E,4 .638E 4

Table 2 Deviation from Gaussianity

of the Hippocampal EEG

REM 'w SWS-1 SWS-2

14 .236E.3 .345E+3 .411E,3 .386E-3

18 .214E.3 .167E 4 .314E.4 .304E.4

22 .559E,3 .505E3 .896E+3 .812E3

30 .135E-3 .116E+3 .455E+3 .389E-3

45 .573E.2 .863E.2 .2865.3 .397E+3

Table 3 Bicoherence Index for

Hippocampal EEG during REM Sle p

es 1 4 1 8 2 2 3 0 4 5

freq. pair (5,5) None (6.6) (7,7) 17,7)

bicoherence 42 None .85 .73 .64



STOCHASTIC IMAGE MODEILING USING CUMULANTS
NVITH APPLICATION TO PREDICTIVE I.MAGE COI)ING

T.E. ihal, and S.G. Wilson

Departmen of Electrical Eng-ineering

University of Virginia

Charlottesville, VA 22901

A bst ract
Stoch:1,t;,t inmge representation techniques traditionally rather than just the power spectr, m., and as such they' can he

r Upon second-order imac statistics to determine the model used to model a muen broader class of image representations.

parameters. This paper reports on the use of third-order cuIm - In particular, predictive image coding is based upon the use of

lant statitics to implement non-causal, phase sensitive ARMA 2-D stochastic linear image representations to construct image

imac models. A noel, linear equation based 2-D MA puari- predictors with which to remove redundancy from ;an image.
Cter estimation algorithn is extended 1rom an existing :-I) The design of a predictive coding system is bically a

ci orithm. for modeling colored prediction-error residuals. and parametric modeling problem, and higher-order statistics can

is used in conjunction with a non-causal 2-D ARMA parameter be used to derive linear predictors which take into account the

cstitatiort algorithm. A weighted least-squares MA approach phase characteristics and non-caasa! dependencies among the

alo developed as has been done in the 1-I) case. Applica- pixels of an image.

tion of cumtuant-based stochastic image representations to This paper reviews and extends the 2-D modeling results
predictive imiaeC coding is discussed and preliminary results of [7] and [8]. and illustrates the potential application of third-
u,ing cusal and noncausal ARMA predictors are presented order st-tistics for differential pulse code modulation (DPCMI)

predictive image coding (see also [121). Section 2 describes the

1. Ilntroduction parameter estimation algorithms of the rumulant-based sto-

Stochastic imitge representations have found application chastic image representations. A novel 2-D MA parameter
in nmany areas f i;e processirg such asdtacompression stimation algorithm is described in 2.2, b extending the I-D

rcstraition, spectral estimation, texture analysis and synthesis. alg ..hm described in [10!. In .'zction 2.3, a weighted least-
an1d classification [9,p.1901. These representations characterize squares version of the 2-D MA algorithm is developed along

the mace as a random field, which is modeled as the output of the lines of [ 11, where the I -D case was considered. Section

a 2-) lincar system whose input is a random noi.,e field, either 2.4 reviews the non-causal ARMA algorithm presented in [7],

v, hite or colored. Depending on the nature of the input noise, and discusses how it can be used in conjunction with the MA

,tochastic image representations are categorized as minimum algorithms of sections 2.2 and 2.3 to reduce the numerical sen-

,ariance (MVR), white noise driven (WNDR), or autoregre,- sitivity of the parameter estimation. Section 3 outlines the
•,ive moving average IARMA) 19,.2071. Current prametcr implementation of cumulant-based stochastic imag e represen-

c-timatiot techni ques use the first- and second-order statis:ics tations as linear predictors in both closed-loop and open-loop

(f images so that the representation realizes the covariance DPCM image coding systems. Section 4 provides simulation

properties of the process, or equivalently, its spectral dcisity results.

tunction. The associated norinal eqi on s are employed to
,oe for the coefficients of the model 11-31. But atutocOirela- 2 Stochastic Image Modeling Using Cumutlants

tiin ,,tatistic, fail to c rivev complete phase information and Let Y (m) =Y (in. ) represent a zero-mean real-valued sta-
cihlnot pro, ide an adequate ,tatistical description of non- tionary random field, Pivcn hy

( irnlinear pro .cscs. l n) - a kk). Yin-k) + h(k)w(n-k) (I

Recnt recearch his hon that higher- tian secod-order kA .
,.titic . w. hich are phase sesitive, c'n be usCd to estimatei

,.:ce cral non-1n inniln phae and asymmetric non-caiisal = l 1.XY~ ,[-,'?,x~ , /,=l-.l' . l-.', ,N', I.
piramteric imige models, [7,8 i . These techniques itienipt to It wvill he assumed that the input excitation i (m) is zer, mean,
maitcn the- vmie modcl to higher ordcr spectra of the proccss non -Gaussi ia and i i.d. and that the model is exponentially



stabhle. Thenir he seconid. third. Mtid tOlIrib-Orlerl cuitiul11,nts ot c~atenatino Of) or each mE Mb M~I ~ 2\~ .In order

N fni are given by to sitriplitvN computation. the term rn~l is chosen to hic 0 so that

C _ ti E (i lv(fl~iII.-~ ott'. diatgonal moments aire used. The novelly of' the above
algorithm is tha;t it Can e stimnate the parmeters of a nortn

I~ ~~~~ Iir~'~~ I Ii i I ITunI phase 2-D M'A process with von-( iatvoian excita-

( 4~li~jk) Ljvli~v m+i )v Il-4-j vm+ k Jt ion. Note 111Mt the eq Iiations are over -parate te ri ied. sinrce

(. i yj--k) - C' J)C( k- i - C k (' h-i) appears in the solutioti vector of ( 10) as a free parameter.
Finally. the algorithm can provide all MA\ Lliracteriza3tion for

Uenl a fiutte record of the 2-diniersjotal process, thle Colored residuals nonnally associated with MVIR s, 171.
N mf, i, X N V anipfe estimates of cutiiats are obtained h%

:e aigth xettonoeao sml seaglgeg- 2.3. Weighted L east Squares NIA Parameter Estimation
(11c:01 Is inljICO ip clr stie) hs. iThe miatrix equatlion itt iQ) canl expressed in thie formi.

C , (mini = n I VI j ifiii-Ilili'ml ( l IA (S)1 1 (s).

ss eren .%:,] is the numbe-d-r of san11ICle inl thle seenielrit l Il iklhere (3 is file unktnown paramecter vector and S IS a sector Conl-

th'IS piper. ss e wkill tLca onl Itatriceer esiliion algorithms itn fdi ttsialnotns

Inl\ u tl",rd-Ordffr umu111lts C, -~ (n2 )l C (i, Ii

I. L Cau~sal AR Parameter Estimautionl 11)1 I "w 1 .NI il A !j' IT C IfI,

If lie ITItode Of' (1) is eanLsa. then the AR parameters anid Ai5) and bt s) are mratrix and sector functions of s re'pec-

sa ~ fv te flloingre n r iiinsft hit an iotT i ii il i liv e ly. The weigh ted least squares iWLS, esimiate of 0 is
third-orde'r cuntulants 171. (it. IA sI At) A(IIhs. i

aik_, t k-i- 0, nil (6).l~
where s is the vector oif sample momrtent,. The vci ghtittg

a km~ k-i~--j I) .~. td 1 ~\~matrix which achieves thre mintuuti riancc estimlate of 0
k. N' ailmng the claSS oif estitmates is giseti by1 I11I

1-re for,-, the a i kI's can he obtained as the solution to an IV--') J)'

we~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~hr r1 ri ne eiimfeutin sn 6 n/r(1 h) is ai matrix wAhose i-tl coilumn is.
nimiion of thec ciium~ttmasd AR paratiecter sohutioni allows - (s) r)A (S)
mr a Il-pass fat: ors i nIii the m transor flitn:tion of thle ifiage uillel. ID I; = __ _ - - ___0

A, ill the CorreLiioil based 2-ID ease, the Sollwronl is not. )
10aiiedt he stable inl prtiLce, and mitioe of inresig td . is a consisteitt etittiate ofI a.syiiprmtic noriimili.edcos - i

:11rs irotimpill,-J to find( a stable one. ancf itia1trix if's. The initial parameter esimate 0 1 is foimd h%
solving 1 10) for It' I .

2.2. NMA Parameter Estimation

Inl Olrir Iii Cstill-ate the MA parramceim of i le A RMA 2.4. Non-causal ARNIA Parameter Est imat ion

isiic rpte.etaio i. ii estimated A R 1iramis s are used to it dehs t'ip I (0 atid 17). it asncescsar\ to ai'nm t11.1
111TttjIL The residucal Ii.e.. AR cotipeis'itl) maceu tile repreentatioti was causal. But Caltaliiv is tot inherent1 inl

--n a th\()i w"fl i ie sirtietiire of the iinaie itself, and a 11i-01 il support
reg.ioil I N, arhitrirs I would he aipproprite hIr a tmorte i-Cc ral

lie \R umnpc~iate itiageis ow onsiere ~ I) V\ nag ri-reseitaiitin Therefore. fori ion eiisl irattieter
estimitilimi ). t1e Algor1itln de1scribed in 17) is iseil Brit1v. it

Ire fal the I ) exten11ot ot tile cuutill i I i~lc se io
I j ), ;-1df -- c ppcidi" A)Cai be sliio\i that.

V /. ' i-n C r j1i ' 'i n .m *, im ij ,1 i:I1 J) -. yz, jit urn i

if 1/ %1. N . tfIj \. ~ If' I N,,

the pr;ute' !i,' ml im 1,1 lz!' .



cxm~n) = a iha i+iniu ~n) i 14ao open-loop DPCNl system shown in Figure 2. This also means
IS that the AR part of the reconstruction filter in the encoder Must

(ni:n) = h hki)h 6+i~rnh i±I) (Il4b) be implemented by truncation. Assuming the trucation error is
negligible, then the following Z-domain relationship can be

A ssiemof iner euatonscanbe on~trutcdfro (I3),and readily estahlished hetween the reronstruction and quantization

uISed to solve for the unknown W(m. f) parameters. After has'- error,
ing, determined the Wni. W's, ( 12 canl be used to solve for the R( Q(z B (z I,, - F (z I,z '

,"n. n) terms. Then, the non-caulsal ARMIA parameters can R (z1 ,z2  Q 2

he obtaiined in closed formi as
where A (z I,z,,) and B (Z I,z 2 ) are the Z-transforms of the AR

a(n)= wpn 1) (q )(- and MA parameters respectively, and F(z71,z2 ) is the transfer
((p.W 13(.0 function of the quantization error feedback filter. Suppose

p . , % q = (AI ,Nb ) now that A, (Z1, Z2 ) is the spectrally equivalent minimum phase

The closed form expressions for the AR (\ A) parameters (EP oe fA( ,i) hni ~ ,2 sdfndt e

il 15 make use of' only the cumnulants that arc part of the p- Fz I~ *i ) =B (Zt.Z-2 )-A,(z ],Z2 ).

'lice ((q-siice) of the reuion Of support N, i )( of the AR it follows that.
iNIAramneter cumnulants. But the solutions of ( 12) and (13) S(')Squ')

pros ides the parameter cumullants over the entire regions of SrUV ~(,)
sUpporit. respectively. It was ohserved in 171 that anyv eon- %%here S2,(U,v) and S~qtu.%) are the spectral densities of r (n)
si-tent MIA paramreter identification alegorithmir may be used to and q (n) respectively. Therefore, by appropriate filtering of
c-timtate- the AR and MA parameters from I 14a) and ( 14bh. the quantization error, an eqjuiv.alence can be established
Pibeiut'ore, if the MA estimation aliaorithm of Section 2.2 is between the spectra of the reconstruction and quan~tization
a-.ed. the parameter estimates wkill he hds~ed Upon the parameter errors in an open-loop DPCM system, even though potntwise
caiultnt samlples2 over the entire support region, rather than the two errors are no longer necessarily equal.

one~ tilice. The I -D Counterpart of this approach is
kdc'cribed in 1131. The ads antagTe of this method over the 5. Simulations
cb'secd form expressions of ( 15) is that all the parameter CUmii- In order to demonstrate the usefulness of cumulant-based
Lint saimples are utilized by the estimation algorithm. This i Mag(e modeling, we generated a 256 x256 ARIMA iniage by,
helps1' to redceII the numerical sensitivity of the algorithm and using zero mean, i.i.d. noise from an exponential distribution

:oikcs Inmproved ed mates if the sample cu~mulants are noisy- with parameter X =0.2, as input to a system with the following
In . 1Idr~ion, the optil %VLS %IA estimation algorithm previ - transfer function, [ 121,

l,adv desc ,ribed could be used to further refine the AR and MA --

cemstunuack wih respect to the parameter CLIuLants. [1(Z .,Z2 ) = (-)6j (I0.z,1 XI_)q1

4. Applic.-tion to predictike image coding l~. 5 i

[his section ueal wkith the potential applica.tion of =-.2z II Z A)91' ±1 Z-
hn.. t ased 2-1) m-odeling approaches to predictise ituage 2 2 1 +43z 2 +O4

o, I ii .inear predictors are constructed usine the ARM,\ Note that the transfer functton ts separable and contains an all-

.1fcl) o I ). her ( n) is now. considered a prediction -error [pass factor. The parameters of the image model are estiniated

l.It is, expected that the phase sensitivec CUM~iitihubah~sed using both autocorreiLtion-basedt arid cuniulant-based parame-

pchtor5 w~iill charalcterize the mnace redundancy better than ter estimation procedunres arid displayed in Table I. The
2nd Iorder couterpartN. These predictors at-c used in two- autocorrelation-based procedure (7) identifies the n'inimnum
btccit ~l'\Iimgecoding, sys;tems. depending, whether the phasec part oif the model hut fails to characterize the all-pass

1i, oaslr non-caii'Al. The First schenrc uses a causal factor. In contrast, the cumulant-based procedure (8), followed
,%R ~ in i lo~d lop KAI ~stm o\% inFiurc by the MA paranieter estimiation algorithm of the AR compen-

I ht: b prudictonr is in-ide the feedbamck loop with the satedl imnage. estimates the true rion-mininII,11 phase transfer

i 'e- t -. wecll kniow ii thait the recon-trucrion error r(1) is tiyt ion.

!ii: ipi.ii!/,titii error qfuj . i c., ['araniecr estimation was also perfonmied on imiages" gen-

11, M)N 1) 1 t 11 (1 i cratecd (runt causail ,\RMA,\(, and iori-cau-Sil AR(Sl.
ARMAIV 1,) irmre ilxels as described] in the previous para-

-- :.nid ,_cic. the AR pairt oi the, ,\RN.- niislcl is rah The support regions for these mordels is shownki in Fig
fill! -k.r . mn-ji'a tll UMc hel more" tcnrl ile . T~he resullts of these simmil;llions. show rn in tarhlcs 2-4.
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Table 2

and - denotes 2-D complex cotwolution. The counterparts for 2-D
autocorrelation and spcctrum are, Causal ARMA(u,3) Parameters

C,,ni Ey i)v i r, T'/z(ih i fll).(A3)Coeff. True Est.
S)=Ely(i)y(i+m 1 II o22h(i)h(i+mlt .' A(A3) -0.8(X) -0.770

1.000 1.025

and -0.700 -0.733
$S, = 1 ! z H(zIz. (A4) AR(8) 0.300 0.264

AR2 -0.380 -0.359

Combining (A2; ,w(A ith ) ,-(4 . and letting c= 0.150 0.214

Y3,, -0.250 -0.319

S2, 1 2z')t2: 1,z 2 :m l=EIl(zI.z2 )S 3>(Z1,2:m 2), (A5) 0.200 0.260
- 1. - _, ) -1.177

In the case of a linear shift-invariant 2-D MA model, the impulse MA(3) 1.800 1.720
rcsponse is finite and correslIvds to the IA coelicients. Then the -1.700 -1.552
time-domain version of (A5) for the MA process my be written,

1: i,mo*)C,,,(mj-i) =c Y h(i)C3,,(mj-i,m2 - i )

ie..'. is ., Table 3
,a here

(i, m) = b (i) h (i +m ). Non-Causal AR(S) Parameters

FIGURE I True Estimated
Clsd. Frm. MA Alg.

x +n) + an(n) . U(n) -0.273 -0.417 -0.257
+ 0.137 0.291 0.138

_ -0.356 -0.421 -0.347
C C MA - 0.164 0.122 0.150

' I predictor ENCODERNC.'-,ncaiisal ~ R-0.520 -0.417 -0.5 16
+ + 0.274 0.222 ().255

- " preictr + -0.425 -0.465 -0.425
aa 0.103 0.146 0.081

uln+ y'(l Table 4

+ 4 C AR , DECODER
C MA C AR Non-Causal ARMA(8,3) Parameters[ P c dlic t r ip re d ic to r

Coeff. True Est.
FIOC:RE 2 -0.273 -0.295

0.137 0.167
1 1 ) I n ) u lni -0 .3 5 6 -0 .3 2 6

A + A 0. 164 0.l20

pr'd..r "- pC 'A AR(8) -0.520 -0.500
pr.ir prdictor q(n) 0.274 0.294

- MA -0.425 -0.333
pred ictor ENCODER 0.103 0.067

-.1.000 -1.084
r MA(3) 3.000 4.342

-2.000 -2.261

+ + DECODER
II+ ... . FIGURF-1 I

C MA - _ NC ARprectolr pir,fitr "---
--t--- Causal AR(8) Non-causa IARI8) Causal M A(3)

fable I
.... ~~ARM.. (5.1)i g I nj dc l [ i k' dL 7-

AR MAcf N.-\ coef.

.. fIl 900 1.260 -().-112 ()AS() -1.2 510 XC.' )i -1 .)94 1)526 -())1 0,0102

' , ( 6 1s)97 1.217 -043() 0.474 -1211 X = Current pixel (i,n)
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FIGURE 4

Ori~inalI rnai('e CLIMLilant- Based ARMA(8 ,3j Model

ALIiuoori~lation- Based ARS N/Todel Cumulntin- Based N on-Causal AR(8 Modc!

(tIIIrnuLIAnt HIC(l \R 8) \1Ide
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ASYMPTOTICALLY OPTIMAL ESTIMATION OF MA AND ARMA PARAMETERS
OF NON-GAUSSIAN PROCESSES FROM HIGH-ORDER MOMENTS

Benjamin Friedlander Boaz Porat

Signal Processing Technology, Ltd. Technion-Israel Institute
703 Coastland Drive of Technology
Palo Alto, CA 94303 Dept. of Electrical Engineering

USA Haifa 32000, Israel

Abstract but are computationally simpler than the minimum vari-

An asymptotically minimum-variance algorithm for ance algorithms.

estimating the MA and ARMA parameters of non Gaus- 2. Minimum Variance Estimation

sian processes from sample high-order moments is de- Using the High-Order Moments

scribed. The algorithm uses the statistical properties In this section we present some general results on
(covariances and cross-covariances) of the sample mo- the estimation of the parameters of stationary time series
ments explicitly. from high-order moments. In particular, we present an

1. Introduction asymptotically minimum variance estimator, and discuss
its statistical properties.

Recent interest in parameter estimation of non Gaus-

sian processes has led to some new parameter estimation Let {Yt} be a stationary and ergodic linear process,
algorithms, both batch-type and recursive. These algo- given by

rithms use the third- (or fourth-) order sample cumu- Yt = Zhkut-k , (2.1)
lants, in addition to the sample covariances, to achieve k
several goals, such as: a) improve the accuracy of the where {ut} is an i.i.d., non-Gaussian sequence of ran-
estimated parameters; b) reduce the sensitivity to ad- dom variables. The impulse response sequence {hk} is
ditive Gaussian noise; c) enable the estimation of non- assumed to depend on a parameter vector 0 of fixed di-
iriinsniu phase and/or non-causal processes. Some re- mension. The impulse response is further assumed to be
cent works on batch-type algorithms for parametric time- absolutely summable, i.e. E. IhkI < oo.
series are [1]-[4]. Examples of recursive algorithms are

[51, [6]. Let us denote the moments of {ut} by

The statistical accuracy of algorithms based on high- 7k = Euk , k > 1, -oo < yk < oo. (2.2)
order statistics depends on the way in which the addi-
tional information is used. In [7], the statistical efficiency We assume that --y = 0 for convenience.

of some existing algorithms was explored. It was found Let pm(ki, ... , k,,-l) be the m-th order moment of
that the algorithms discussed in [3] and [5] are not very Ye,
efficient, in the sense that their asymptotic variance is rn-1

rather high, compared to a certain lower bound. The u.(ki,...,k.-,) = E{y, 171 Yt+k,) • (2.3)
paper [7] also showed, in principle, how the information 1=1

in the high-order cumulants can be optimally exploited Under the above assumptions, the moments of yt of all
to attain asymptotically ""is lower bound. orders are finite.

The present work further expands the basic ideas Assume we are given measurements of {y1 } in the
presented in [7]. The statistical properties of the high- range I < t < N + K, where K is a fixed integer. Let the
order cumulants are used to construct batch-type esti- m-th order sample moment Pm(ki,...,km-.) be defined
mation algorithms for MA and ARMA processes. These by
algorithms are asymptotically minimum variance, in the
class of algorithms based on the high-order moments. (kN N -i

In [8] we also describe algorithms of weighted least- k ... i) ( i Yt+k.), (2.4)

sauares type, with an optimal weight matrix. These al- 0 < - < ... < ki < hx.
gorithiis do riot achieve iniiimurn variance performance,

* J his work was supported by the National Science Foundation Each of the sample moments is an unbiased estiiiale

under grant no. ISI 8760095. of the corresponding statistical moment. This estimate
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is also known to be consistent both in the mean-square An alternative approach, is to replace E(x) in (2.9)
and with probability one, i.e. by an estimate of this matrix, directly computed from the

data. Let E be such an estimate, and define

(2.5a)
lina £[p,,(-. . k ....1 ) - i.(m ... )]2 = 0. V(x) = [s(X) - i]Tt- 1 [s(x) - i]. (2.10)

V -c
(2.5b) Let o be the value of x for which '(x) attains a global

Let, s denote a vector consisting of a fixed subset minimum (if a global minimum exists). Let us further
of sample moments as in (2.4), and let s be the corre- assume that t is a consistent estimate of E(O), 0 being
sponding vector of statistical moments as in (2.3). The the true parameter vector. Then we have the following
problem we are concerned with is the estimation of the theorem.
parameter vector 0 from the vector 9, i.e. Theorem 1: Under some regularity conditions on

Y( (specified in [8]), the estimate 0 obtained through
global minimzation of (2.10) has the asymptotic covari-

The asymptotic statistical properties of estimates of this ance given by the right-hand side of (2.8).

type were discussed in detail in [7]. As was shown there, Proof: See [8].
these properties depend on the asymptotic normalized Summing up, an asymptotically minimum variance
covariance matrix of, given by estimate o can be obtained through global minimization

E(O) = lir N . [E {ssT} - ssTJ (2.7) of V(z) given in (2.10). For such an estimate to be pos-
N-o sible, it is necessary to be able to compute a consistent

estimate of E(0), E, from the measurements.
In particular, the asymptotic covariance of 0 was shown

in [7] to be bounded from below as follows [7, Theorem The estimation of E(3) is discussed in the Appendix
2] where an algorithm for computing t from the measure-

ments is presented. Based on this estimate we derived
[ 2) ]-1 practical algorithms for param,_er estimation of MA and

lir N - cov {0} > (- 1 (0) ARMA processes from high-order moments. Due to space
A - limitations we defer many of the details to [8].

(2.8)
Fiithermore, the lower bound (2.8) is asymptotically tight, The Minimum Variance MA Algorithm
i.e., there exists an estimate 0 whose asymptotic normal-
ized covariance matrix satisfies (2.8) with equality. Such The estimation procedure involves the minimization
an estimate can be constructed as follows. For each vec- of (2.10) using an iterative Gauss-Newton procedure.
tor x in the domain of 0, let Having estimated t from the data, it remains to com-

pute s(x) and 2 (the latter is needed for the iterative
V(X) = [s(x) - s]TE-l(x)[s(x) - s]. (2.9) update of x).

Let 0 be the value of x for which l/(x) attains a global For MA processes we have

ininimun (if a global minimum exists). This particular 2 (k) =72 bb+k P3 (k, k) i+
estimate achieves the lower bound (2.8) as N - oo [7, M2 k

Theorem 3]. JU(,0) =7 'b:
Estimates obtained through minimization of (2.9)

are difficult to implement. The main source of difficulty (2.11)
is the need to compute the matrix E(z) as a function where the summations include all non-zero terms. Hence
of the process parameters, at each iteration of the mini- we get
mization procedure. Closed-form expressions for the en-
tries of E(x) were developed in [7], for the case where 0p 2tI) =72 (bt+k + bek)
only /12 (ki) arid p3 (kik 2 ) appear in i. These expres- Ob,

sions are very complicated, and would be considerably Op3(k, k) =7(b + 2btb.k); (2.12a)
more complicated when the higher order moments are in- Ob,
clufded. This difficulty essentially renders the algorithm OtaI(k, 0)
)aLsel on the minimization of (2.9) impractical. Ob. -T(bt2-k + 2btbt+k)
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0P2 (k) P2 (k) 0p3 (k,k) p3(k,k) Table 1. Results for b(z) = 1 +0.6z-', N = 1000
072( 72 073 73

0p 3 (k,0) PA(k, 0)
a 73 7/3

(2.12b) Monte Monte Analytic
Ag. Par. True -Carlo -Carlo Standard

The Minimum Variance ARMA Algorithm Value Mean Std. Dev. Deviation

As in the MA case, we need to compute s(x) and
ax-r) as functions of the ARMA parameters at each it- GM bi 0.6 0.5993 0.1066 0.1108

eration. The paper [7] discusses how to do this for the
second- and third-order moments. These quantities are
then used in a Gauss-Newton procedure to find the value LS bi 0.6 0.5913 0.0588 0.0656
of x which minimizes (2.10).

3. Numerical Examples
MV b, 0.6 0.5950 0.0626 0.0646

In this section we illustrate the algorithms given in
this paper by some examples, and compare the simula-
tion results to analytic results, obtained by the methods
described in [7]. All the examples involve MA processess,
and the algorithms based on the third-order cumulants.
The driving noise {ut} was taken as exponentially dis- Table 2. Results for b() 01 - 1.8z -1 + 0.95z 2 ,
tributed, with 71 = 0,72 = 1,73 = -2. For each test N = 2000
case we performed 100 Monte-Carlo runs, and tested the
Giannakis-Mendel (GM) algorithm, the weighted least-
squares (WLS) algorithm (see [8] for details), and the
minimum-variance (MV) algorithm. Monte Monte Analytic

Alg. Par. True -Carlo -Carlo Standard
The numerical results for the four test cases are a ue Mean -al e eaion

Val ue Mean Std. Dee. Deviation
given in Tables 1 through 4. The first test case uses
a MA(1) process with zero inside the unit circle. The
second uses a MA(2) process, with two complex zeros GM bi -1.80 -1.7853 0.3365 0.3545
inside the unit circle. The third test case uses a MA(2) b2 0.95 0.9418 0.0692 0.0550
process with two real zeros, one inside the unit circle
and one outside it. The fourth test case uses a MA(3)
process, with two complex zeros outside the unit circle, LS b, -1.80 1.7993 0.1668 0.0540
and a real zero inside the unit circle. b2  0.95 0.9528 0.0607 0.0539

The following conclusions can be drawn from the
numerical results:

(i) The GM algorithm performs very close to what is MV bi -1.80 -1.8094 0.0593 0.0405

predicted by the analysis. A similiar conclusion was b2 0.95 0.9540 0.0510 0.0377

drawn in [7].

(ii) The MV algorithm performs only slightly worse than
what is predicted by the analysis. The reader is re-
minded that this algorithm uses the estimated ma-
trix rather than E(O), so the slight degradation GM algorithm (via the matrix D(Oo) - see [8]).
in performance is not surprising. In any case, the Even so, the WLS algorithm appears to offer an un-

MV algorithm performs considerably better than provement over the GM algorithm.

the GM algorithm. 4. Conclusions

(ii) The WLS algorithm does not quite achieve the per- We presented several algorithms for estimating the
formance predicted by the analysis. We explain this parameters of MA and ARMA non-Gaussian processes
behavior by the fact that this algorithm is relatively from sample high-order moments. These algorithms use
sensitive to the initial estimate obtained from the explicitly the second-order statistics of the sample mo-
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Table 3. Results for b(z) = 1 - 2.05z - 1 + z - 2 , The asymptotically minimum variance algorithms
N.= 5000 were shown, by numerical simulations, to perform close

to theoretical predictions. The optimal weighted least-
square algorithms did not reach their theoretical perfor-
mance, but still offered some improvement over simpler

Monte Monte Analytic algorithms that do not use. the E matrix.
Aig. Par. True -Carlo -Carlo Standard From computational point of view, most of the load

Value Mean Std. Dev. Deviation is taken by the computation of the high-order moments

and the matrix t. This load is approximately propor-
tional to the cube of the model order per data point.

GM bi -2.05 -2.0418 0.1333 0.1631 Since the computational load for the minimum variance
b2  1.0 0.9938 0.0501 0.0477 algorithm is similar to the weighted least-squares algo-

rithm, while its statistical acuracy is considerably higher,
this algorithm is preferable to the weighted least-squares

VLS b1  -2.05 2.0598 0.0752 0.0874 for most applications. The main disadvantage of the
b2  1.0 1.0014 0.0455 0.0477 minimum variance algorithm is its more complex imple-

mentation (programming), especially the need for itera-
tive optimization procedure.

MV b, -2.05 -2.0555 0.0452 0.0374
b) 1.0 1.0004 0.0339 0.0296 Interesting topics for future research include: i) de-

velopement of recursive/adaptive versions of the algo-
rithms given in this paper; ii) performance analysis of
the algorithms based on the fourth-order moments, sim-
ilar to the one done in [7] for the third-order moments.

Table 4. Results for References

b(z) I + 0.9z- - + 0.385z - 2 - 0.771z - 3 , N = 1000 [1] G. B. Giannakio, "Cumulants: A Powerful Tool in
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pp. 1333-1334, September 1987.
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Monte Monte Analytic timation: A Parameter Approach", IEEE Trans.

AIg. Par. True -Carlo -Carlo Standard Acoustics, Speech and Signal Processing, Vol. ASSP-

Value Mean Std. Dev. Deviation 33, No. 4, pp. 1213-1230, October 1985.
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I 0nal Processing, Vol. 37, No. 3, pp. 360-377, March,
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63 0.771 -0.7437 0.0930 0.116319. [4] G. B. Giannakis,"A Kronecker Product Formulation
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oati Control, to appear. N] [ q

[9] G. B. Giannakis and J. M. Mendel, "ARMA Order -pm(kl,...,km-1)]
Determination via High-Order Statistics", submit- r(- ] a.3ted for publication. Yt Yt+l, - n .,, (a.3)

[10] K. S. Lii and N. Rosenblatt, "Deconvolution and j=f
Estimation of Transfer Function Phase and Coeff-
cients for Non-Gaussian Linear Processes", Annals The expression (a.3) is exact, and is, in fact, a general-
of Statistics, vol. 10, no. 4, pp. 1195-1208, 1982. ization of the results in [10]. Using the stationarity and

Covariances ergodicity properties of the given process, we can consis-
Appendix: Estimation of the n tently estimate the expectation in the right-hand side of

of the Sample Moments (.)b

In this appendix we derive a procedure for estimat- (a.3) by

ing the covariances of the sample moments of stationary
and ergodic time series. We first assume that the given E ye, yk , (k1, ... , km - 1
process is pure MA, and later extend the procedure to ... =.
!nore general processes. (1-1Let {yj be a MA(q) process, and let (kl, ... ,km.) I Y t+t -P(,...,f,-)

and p,n(ki.krn-i) be its statistical and sample mo- \. .J
rnents, defined by (2.2) and (2.4) respectively. We have

E {im(ki,.km..-),,([i,.,-)} V Yo , Yf,+.) -1(ki, ,km-)]

,=IV = 2= E.= E• Ys+t Y,+t+t, ii i, . ,- 0 (a.4)
\3=1

F= { E yoy- Yk.) i Yt-,+, Finally we substitute (a.4) in (a.3) to get the fol-
=1 t=l i=1 \/=1 lowing estimate

1 N - I - N .cov {f " (k ,...,k m_ -,), i, , . - )}

t t(N-1) k+q) s 0-=1

(M=1 \,- L,(/ ... k,,,)E {Yo Yt ("iYk) ( Yt+t) (a.I t= (11+q) - ){T [Y(m )

j = 1 m ( ki . .. n 1 ) ]

Hence, (-
Ys y+t riy+t+t, -"(fi,.., l (a.5)

co,. Jp ,(k ,.., j ,i. e .. . l}\ =1

I N, I E [yo YNext we wish to extend the result (a.5) to a broader

t=-( -) class of processes. Let us assume thatr {yt} is the linear
(ki k.., ~in~1process given in (2.1) and that the impulse response {hk

is exponentially stable, i.e.

Yf Yt+t, -/1,1(,,,-1) ,a.2) 1h I < A c - j  (a.6)

r, sc ifor some A > 0, a > 0. In this case, the productNow, since fy, Iis aMA(q) process, the producty l--i (O Yo -, ) i prxmtl needn fyYo (1-i=' yk, i approximately independent ofy1 
' - ' -

.yk,) is statistically independent of the product Yt (i t +te) whenever t > k, + q0 or t < -(qo + fl), and qo

Yt+t,) for t > k, + q, and for t < - (q + 1 ). Therefore is large enough. In other words, (a.5) holds as an ap-

(n.2) can he written as proximation when q is replaced by q0. The par miter
q0 represents the "effective MA order" of the process, or

cov {iLm(kl.k... in 1  .  -)J the separation beyond which the data are approximately
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independent. We propose, therefore, to use (a.5), (a.6) negative eigenvalues by zeros. The eigenvector matrix Q

andl (a.7) for processes satisfying the above condition and the modified eigenvalue matrix A are used by the al-

(ARMA processes in particular), while replacing q by orithms described in [8, Section 4] in lieu of the matrix
q0.

To make (a.5) a consistent estimate, we need to vary

q0 as a function of N. It can be shown that any weakly

increasing function is sufficient for this purpose, i.e. a

function satisfying

lim qo(N) lim (a.)
N-. v,-cc N

For example, q,) = log N is a reasonable choice.
When the number of data points is fixed, the no-

tion of consistency is meaningless. Rather, one needs

a practical procedure for deteiminig the effective MA

order qO from the measurements. To do this we note

that, if the effective order is q0 , then P2(qo + 1) is ap-
proximately normal with zero mean and variance given

approximately by

2
q.+ 1

var{l/2(qo + 1)} 1 - I)
t=-(2qo+l)

N

N1_[YYs+qo+ -2(qo + 1)

q -2(qo + 1)]) .(a.8)

Therefore we can determine qo by the following pro-

cedure.
(i) Let qo = 0.

(ii) Compute 1p2(qo + 1) by (2.4) and var{ji 2 (q0 + 1)} by
(a.8).

(iii) Compute -r = /12(qo+1)/ /var{p2(qo + 1)) and com-

pare to a threshold 7-o. The threshold is determined

by the required probability of error and the stan-

dard normal distribution.

(iv) If i" < -"o stop, else increase q0 by 1 and goto step
(ii).
This procedure has to he carried out prior to the

computation of cov.... ... ,k,,- 1 ), _j i, .

via (a.5). Alternatively, methods described in [9] can be

used for the same purpose.

So far we have shown how to compute the entries
of the matrix Ei. An additional computational step will

generally be reqniired, because i2 is not guaranteed to be
positive definite. Indefinite matrices are not allowed ;n

the algorithms described in [8, Section 4], because they

would lead to non-positive cost functions. Nevertheless,

positive semidefinite matrix E is legitimate tnd can be

aceomodatetd. as explained in [8, Section 41. Therefore,

w', propose to compute the final 1, as the minimum-
norri positive sermidefinite approximation of the matrix

Obtained above. This is done by computing the eigen-
value/eigenvector decomposition of !,, and replacing all
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SIGNAL RECONSTRUCTION OF SONAR AND OPTICAL IMAGES

BY MULTISPECTRAL TECHNIQUES

A. C. Du, bey, R. C. Manning, and E. Moritz

Naval Coastal Systems Center, Code 2230
Panama City, Florida

ABSTRACT opposed to entire images. This makes the problem
computationally simpler by traioforming the 2-D filtering

A computationally efficient identification procedure for problem into a I-D filtering problem. While this approach
non-Gaussian white noise driven linear, time-invariant, is not the ultimately desired complete 2-D formulation and
non-minimnum phase systems was evaluated for use on test of the higher order spectral techniques, results of the
sonar and optical images. The procedure which was work demonstrate the merit of using the higher order
proposed by Pan and Nikias [ ] is based on the idea of spectral techniques for signal enhancement.
coiputr'g the complex cepstrum of higher order
cumulkInts of tle system output. In particular, the BACKGROUND AND THEORY
differential cepstrum parameters of the non-minimum
phase impulse response are estimated directly from higher In most cases (moderate depth) the noise in sonar is of a
i)rder cumulintS via a two-dimensional FFT operation, random nature and is Gaussian distributed over short time
Individual scan lines from sonar images were processed periods [3]. Phase relationships due to transient signals or
and significant noise suppression was observed. The signals generated by quadratic nonlinear mechanisms are
usefulnlss of the procedure as a method for the described by their bispectrum [4]. Gaussian noise does
enhancement of sonar and optically acquired images was not contribute to the bispectrum because the bispectrum is
%,erificd. sensitive not just to the magnitude but also to the phase

relatio:.ships of the frequency components of the signal.
Thus, if a transient or non-Gaussian signal is present in a
Gaussian noise environment, it is possible to suppress the

INTRODUCTION noise and improve the signal to noise ratio via bispectrum
approach. The method has been used in astronomy and in

In many Navy applications, one is faced with the need to other areas [5, 6, 71.
perform detection and classification operations on data
presented in image fornat. Examples of applications The problem we are faced with is to develop a means for
abound in bearmformed sonar displays and passive and enhancing images that are contaminated with noise. To
aeti,,e optically acquired inages. Typicall, these images cast the problem into higher order spectral representation,
contain a considerable amount of noise. For sonars, these images arc translated into a collection of one dimensional
noise soirces may be environmental sea state noise, signals (horizontal scan lines). The translation rule
inipulixve biologically generated noise sources (such as transforns the intensity of a given pixel such tiat ii is
snapping shrimpm).d boundary rcverberations in the form regarded as an output sequence [X(k)} of an Auto
of bottom Or surface backscattering. In optical systems, Regressive Moving Average (ARMA) process. This
onie may be faced with the problem of glint, turbidity, and allows the use of multispectral techniques developed by
other interference sources. In order to perform the Nikias c al'- ';. The objective now becomes the
detection and classification tasks accurately, one desires reconstruction of the phase and magnitude response foran
to ,,ork %k ith the best possible irnages. To this end, we re output data sce J X(k) }.
cxploring alternative signal processing approaches to aid
in image enhancement. Based on the progress of It is assumed that the output sequence IX(k)}, K = 1, 2,
theoretical and algorithmic developments in the field of ... is formed by the linear superposition of a zero-mean

hilghcrorder spectral signal processing, it became apparent Gaussian, white noise process [W,(k)), and an ARMA
that ln,,estigationt of higher order spectral signal process described by
pr c , i oin real i mages o t was warranted.

li thi, paper. we repo,, on the application of X(k) - lV;(k) =- d,X(k - i) + X u,1V';(k + i),
~pectrumihi'.-epdmuni technilues to representative ,

c)iponcnt,, of ionar generatcd imagery This data is
rCprcntatix c of a variety of image data including w here t W5 ,(k) is a zero-mean non-Gaussian, white noise
optieall\ generated dita. '[he approach taken in this paper process.
i, to ,ork , ilh ndi idua scan lines of image data, as
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An estimate of the third order moment sequence R m, n) The recursion equation for i(n) is terminated at n = N,
is made by segmenting X~k) into N1.records of %I samples where 1 (n ) j< 1i (very small) for all n = N. Recusion
such that equation for e(n) is terminated at n = -N2 where I 6(n) j< y

)'' = x(j± (i - 1)AI) for n < -N,.

APPLICATION TO SONARi = 1, 2 .... . j= l1, 2,...M

Figures 1(a) through 1 (d) are foradata sequence with noise
The third order moment for each segment is generated by only and figures 2(a) through 2(d) are for a data sequence

with signal plus noise. In figure 2(a), the presence of the
signal is apparentt due to the occurrence of a shado\w zone.<,,,=- V ,r, .,=2...

. Figures 1(b) and l(c) show the minimum and maximum
phase impulse responses for the sequence with noise only.

S=max { -n, -n }, S, = min M, M - M, I Figures 2(b) and 2(c) are the corresponding minimum and
- n). maximum phase impulse responses for the sequence which

contains signal plus noise. Though there is no easily
The estimate R (m, n) of the third order moment sequence discernible difference between figures 1 (b) and 2(b), there
for the input data IX(k)) is calculated by averaging over is a noticeable difference between figures l(c) and 2(c).
all the segments as follows: Tiis is expected if the noise is Gaussian and the signal is

the rcsuh of ARMA process described above.

I vi
n : - V 'k(m, n) Whca we compare figures 1(d) with 2(d) we notice a

NL, = significant difference between the two. These two figures
are the reconstructed non-mininum phase impulse

The ceptri ii coefficients fAk ') and IB1"} are computed responses for the sequences la) and 2(a), i.e., noise vs.
uIing the 1-1-7 method of reference 1. signal. The non-minimum phase impulse respo-se of the

signal is clearly evident.
Using the following recursion equations, the minimum
phase i(n ) and maximum phase 6(n) impulse responses CONCLUSIONS
are calculated:

For backscattered data acquired in real sonar
1 - 1 environments, with a characteristic low signal to noise

1(n)=- I i (k)i(n -k + 1) ratio (SNR), the process of .omputing the complex
cepstrum of higher cumulants of the system output is an
efficient approach for:

6 n ) -- 6 , ; ( k ) 6 ( n -k + 1 ) -1 - , 3 .k(n k+( =- " (I) Suppressing the ambient noise contamination of

the sonar data.

and i(O) k0)= 1 (2) Estimating the non-minimum phase impulse

An FFT is performed to obtain toe corresponding response of the backscattering medium.

frt-luency responses. (3) Verifying the Gaussian -nd non-Gaussian
characteristics of the individual components
within the sonar data.

1(w) = " i(n )e
The results from this study suggest that the

and bispecirun/bicepstruinm approach may be useful for
enhancing the detection and classification capability of
active sonar and optical imaging systems.
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